Electronics and Electrical Engineering and Control

Trajectory estimation of high speed target based on ultra short baseline acoustic arrays

  • CHEN Zhaonan ,
  • SUN Ao ,
  • WANG Lei ,
  • YAN Xiaopeng
Expand
  • 1. 91550 Troops, People's Liberation Army of China, Dalian 116023, China;
    2. Navigation College, Dalian Maritime University, Dalian 116023, China

Received date: 2018-05-08

  Revised date: 2018-07-02

  Online published: 2019-03-28

Supported by

National Natural Science Foundation of China (61801481,61801482,61701504)

Abstract

Aiming at the problem of low altitude and high speed flight target tracking, the time-frequency characteristics of a typical target noise signal are studied. Since the spectrum of the signal is wideband and is mainly distributed in the low frequency domain, this kind of targets is hard to track in the frequency domain. Considering the constrained layout space for the acoustic sensor arrays, a target tracking method based on the ultra short baseline arrays is proposed. All extreme points of the sound intensity in the ultra short baseline arrays are individually extracted to estimate the vertical line of the target motion trajectory. The moving direction of the target is estimated by calculating the multiplicative vectors of multiple vertical lines. The motion trajectory is obtained by the multiplane intersection method. Theoretical errors of the azimuth angle, pitch angle, and estimated moving trajectory are derived. To successfully estimate the trajectory, all the arrays should not be located on the same plane with that of the target trajectory. Simulation results show that when 4 ultra short baseline arrays are used, the average error of angle estimation is within 4°, and the relative error of position estimation is about 5%. The simulation results verified the proposed method.

Cite this article

CHEN Zhaonan , SUN Ao , WANG Lei , YAN Xiaopeng . Trajectory estimation of high speed target based on ultra short baseline acoustic arrays[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(3) : 322296 -322296 . DOI: 10.7527/S1000-6893.2019.22296

References

[1] 董明荣, 许学忠, 张彤, 等. 空中炸点三基阵声学定位技术研究[J]. 兵工学报, 2010, 31(3):343-349. DONG M R, XU X Z, ZHANG T, et al. Research on three-array acoustic localization technology for the aerial blast points[J]. Acta Armamentarii, 2010, 31(3):343-349(in Chinese).
[2] 杨亦春. 反直升机智能雷弹声复合引信技术——时延估计、目标定位和识别及系统设计[D]. 南京:南京理工大学, 2000:12-15. YANG Y C. Technology of sound composite fuze for anti-helicopter smart thunder[D]. Nanjing:Nanjing University of Technology, 2000:12-15(in Chinese).
[3] 王磊, 陈昭男. 基于被动声学的超声速武器脱靶量结算方法[J]. 应用声学, 2018, 37(3):385-390. WANG L, CHEN Z N. Supersonic anti-ship weapon miss-distance using passive acoustic location[J]. Journal of Applied Acoustics, 2018, 37(3):385-390(in Chinese).
[4] 谢维, 刘小睿, 佟健飞, 等. 低信噪比下激波信号奇点检测方法[J]. 声学学报, 2018, 43(4):495-503. XIE W, LIU X R, TONG J F, et al. Detection of shock wave signals using singularity under low SNR conditions[J]. Acta Acustica, 2018, 43(4):495-503(in Chinese).
[5] KAM W, LOBRIAN G F, GAO Y J, et al. Aircraft flight parameter estimation using acoustic multipath delays[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(1):259-267.
[6] BRIAN G F. Variability in the passive ranging of acoustic sources in air using a wavefront curvature technique[J]. The Journal of the Acoustical Society of America, 2000, 108(4):1535-1544.
[7] KAM W L, KAM G F. Broadband passive acoustic technique for target motion parameter estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(1):163-175.
[8] NIELSE R O. Acoustic detection of low flying aircraft[C]//IEEE Conference on Technologies for Homeland Security. Piscataway, NJ:IEEE Press, 2009:101-106.
[9] 佟建飞, 谢维, 胡小青, 等. 单声阵列的低空目标轨迹估计方法[J]. 声学学报, 2016, 41(5):665-673. TONG J F, XIE W, HU X Q, et al. Fight path estimation of low altitude target with a single acoustic array[J]. Acta Acustica, 2016, 41(5):665-673(in Chinese).
[10] BRIAN G. A ground-based narrow-band passive acoustic technique for estimating the altitude and speed of a propeller-driven aircraft[J]. The Journal of the Acoustical Society of America, 1992, 92(3):1403-1407.
[11] BRIAN G F, QUINN B G. Application of the short-time Fourier transform and the Wigner-Ville distribution to the acoustic localization of aircraft[J]. The Journal of the Acoustical Society of America, 1994, 96(2):821-827.
[12] KAM W L, BRIAN G F. Flight path estimation using frequency measurements from a wide aperture acoustic array[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2):685-694.
[13] MARTIN S R, GENESCA M, ROMEU J, et al. Passive acoustic method for aircraft states estimation based on the Doppler effect[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2):1330-1346.
[14] 吴国清, 马力. 利用辐射噪声多线谱的多普勒进行距离估计[J]. 声学学报, 2006, 31(2):140-145. WU G Q, MA L. Range estimation by Doppler of multi-line in radiated noise spectrum[J]. Acta Acustica, 2006, 31(2):140-145(in Chinese).
[15] 王昭. 小基阵高精度声测被动定位的研究[D]. 西安:西北工业大学, 1999:28-40. WANG Z. Research on passive localization using small size array[D]. Xi'an:Northwestern Polytechnical University, 1999:28-40(in Chinese).
[16] 陈华伟. 低空目标声测无源定向理论与算法研究[D]. 西安:西北工业大学, 2004:77-102. CHEN H W. On passive acoustic direction finding for low altitude targets[D]. Xi'an:Northwestern Polytechnical University, 2004:77-102(in Chinese).
[17] 姜宇翔. 多目标被动声探测定向技术研究[D]. 南京:南京理工大学, 2014:18-29. JIANG Y X. Orientation system by the technique of passive acoustic detecting for multiple targets[D]. Nanjing:Nanjing University of Technology, 2014:18-29(in Chinese).
[18] 宁立方, 张超, 潘峰. 飞行起落架噪声源定位的压缩感知算法[J]. 航空学报, 2018, 39(5):121810. NING L F, ZHANG C, PAN F. Compressive sensing algorithm for sound source location of aircraft landing gear[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):121810(in Chinese).
[19] BRIAN G F. Source parameter estimation of aero-acoustic emitters using non-linear least squares and conventional methods[J]. IET Radar, Sonar& Navigation, 2016, 10(9):1552-1560.
[20] DMOCHOWSKIJ P, BENESTY J S A. Broadband MUSIC:Opportunities and challenges for multiple source localization[C]//Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustic. Piscataway, NJ:IEEE Press, 2007:18-21.
[21] SHIN J, LEE Y, KIM H. Reduced-complexity maximum likelihood direction-of-arrival estimation based on spatial aliasing[J]. IEEE Transactions on Signals Processing, 2014, 62(24):6568-6581.
[22] 孙书学. 智能子弹药的运动声阵列对声目标定向理论研究[D]. 南京:南京理工大学, 2009:35-45. SUN S X. Localization of acoustic targets with motion acoustic array in the brainpower submunition[D]. Nanjing:Nanjing University of Technology, 2009:35-45(in Chinese).
Outlines

/