[1] BAKER T J. Mesh generation:Art or science[J]. Progress in Aerospace Sciences, 2005, 41(1):29-63.
[2] SLOTNIK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aeroscience:NASA/CR-2014-218178[R]. Washington, D.C.:NASA, 2014.
[3] THOMPSON J F. A survey of dynamically-adaptive grids in the numerical solution of partial differential equations[J]. Applied in Numerical Mathematics, 1985, 1(1):3-37.
[4] ROY C J. Review of discretization error estimators in scientific computing:AIAA-2010-0126[R]. Reston, VA:AIAA, 2010.
[5] FIDKOWSKI K J, DARMOFAL D L. Review of output-based error estimation and mesh adaptation in computational fluid dynamics[J]. AIAA Journal, 2011, 49(4):673-694.
[6] ALAUZET F, LOSEILLE A. A decade of progress on anisotropic mesh adaptation for computational fluid dynamics[J]. Computer-Aided Design, 2016, 72:13-39.
[7] PARK M A, KRAKOS J A, MICHAL T, et al. Unstructured grid adaptation:Status, potential impacts, and recommended investments toward CFD vision 2030[C]//46th AIAA Fluid Dynamics Conference. Reston, VA:AIAA, 2016.
[8] 阎超, 于剑, 徐晶磊, 等. CFD模拟方法的发展成就与展望[J].力学进展, 2011, 41(5):562-589. YAN C, YU J, XU J L, et al. On the achievements and prospects for the methods of computational fluid dynamics[J]. Advances in Mechanics, 2011, 41(5):562-589(in Chinese).
[9] CHEN J, ZHENG J, ZHENG Y, et al. Tetrahedral mesh improvement by shell transformation[J]. Engineering with Computers, 2017, 33(3):393-414.
[10] SI H, GOERIGK N. On tetrahedralisations of generalized chazelle polyhedra with interior steiner points[J]. Computer-Aided Design, 2018, 103(1):61-72.
[11] 崔鹏程, 邓有奇, 唐静, 等. 基于伴随方程的网格自适应及误差修正[J]. 航空学报, 2016, 37(10):2992-3002. CUI P C, DENG Y Q, TANG J, et al. Adjoint equations-based grid adaptation and error correction[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):2992-3002(in Chinese).
[12] LINN R V, AWRUCH A M. Edge-based anisotropic mesh adaptation of unstructured meshes with applications to compressible flows[J]. Engineering with Computers, 2017, 33:1007-1025.
[13] ALAUZET F, LOSEILLE A, MARCUM D, et al. Assessment of anisotropic mesh adaptation for high-lift prediction of the HL-CRM configuration[C]//23rd AIAA Computational Fluid Dynamics Conference. Reston, VA:AIAA, 2017.
[14] ALRUTZ T. Hybrid grid adaptation in TAU[C]//Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2005:115.
[15] JOUBARNE E, GUIBAULT F, BRAUN O, et al. Numerical capture of wing tip vortex improved by mesh adaptation[J]. International Journal for Numerical Methods in Fluids, 2009, 67(1):8-32.
[16] LEPAGE C Y, SUERICH-GULICK F, HABASHI W G. Anisotropic 3-D mesh adaptation on unstructured hybrid meshes:AIAA-2002-14318[R]. Reston, VA:AIAA, 2002.
[17] PARK M A. Three-dimensional turbulent RANS adjoint-based error correction:AIAA-2003-3849[R]. Reston, VA:AIAA, 2003.
[18] 李立, 白文, 梁益华. 基于伴随方程方法的非结构网格自适应技术及应用[J]. 空气动力学学报, 2011, 29(3):316-309. LI L, BAI W, LIANG Y H. An adjoint-based method for unstructured mesh adaptation and its applications[J]. Acta Aerodynamica Sinica, 2011, 29(3):316-309(in Chinese).
[19] 唐静, 郑鸣, 邓有奇, 等. 网格自适应技术在复杂外形流场模拟中的应用[J]. 计算力学学报, 2015, 32(6):752-757. TANG J, ZHENG M, DENG Y Q, et al. Grid adaptation for flow simulation of complicated configuration[J]. Chinese Journal of Computational Mechanics, 2015, 32(6):752-757(in Chinese).
[20] SAHNI O, OVCHARENKO A, CHITALE K C, et al. Parallel anisotropic mesh adaptation with boundary layers for automated viscous flow simulations[J]. Engineering with Computers, 2017, 33:767-795.
[21] OVCHARENKO A, CHITALE K, SAHNI O, et al. Parallel adaptive boundary layer meshing for CFD analysis[C]//Proceedings of the 21st International Meshing Roundtable. Berlin:Springer, 2013:455.
[22] YANG H Q, CHEN Z J, PRZEKWAS A. Adaptive mesh refinement with high-order scheme for an unstructured pressure-based solver:AIAA-2014-0077[R]. Reston, VA:AIAA, 2014.
[23] LIU Z, YANG Y, GONG A, et al. Unstructured adaptive grid refinement for flow feature capture[J]. Procedia Engineering, 2015, 99:477-483.
[24] WOOPEN M, MAY G, SCHÜTZ J. Adjoint-based error estimation and mesh adaptation for hybridized discontinuous Galerkin methods[J]. International Journal for Numerical Methods in Fluids, 2014, 76(3):811-834.
[25] 张贺, 钟诚文, 宫建, 等. 气体动理论BGK格式的网格自适应方法[J]. 航空学报, 2014, 35(3):687-694. ZHANG H, ZHONG C W, GONG J, et al. Adaptive mesh refinement for gas-kinetic BGK scheme[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):687-694(in Chinese).
[26] SENGUTTUVAN V, CHALASANI S, LUKE E A, et al. Adaptive mesh refinement using general elements:AIAA-2005-0927[R]. Reston, VA:AIAA, 2005.
[27] 张扬, 张来平, 赫新, 等. 基于自适应混合网格的脱体涡模拟[J]. 航空学报, 2016, 37(12):3605-3614. ZHANG Y, ZHANG L P, HE X, et al. Detached eddy simulation based on adaptive hybrid grids[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3605-3614(in Chinese).
[28] MOXEY D, GREEN M D, SHERWIN S J, et al. An isoparametric approach to high-order curvilinear boundary-layer meshing[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 23(7):636-650.
[29] HINDENLANG F, NEUDORFER J, GASSNER G, et al. Unstructured three-dimensional high order grids for discontinuous Galerkin schemes:AIAA-2011-3853[R]. Reston, VA:AIAA, 2011.
[30] XU J, CHERNIKOV A N. Automatic curvilinear quality mesh generation driven by smooth boundary and guaranteed fidelity[J]. Procedia Engineering, 2014, 82:200-212.
[31] 唐静, 邓有奇, 马明生, 等. 飞翼气动优化中参数化和网格变形技术研究[J]. 航空学报, 2015, 36(5):1480-1490. TANG J, DENG Y Q, MA M S, et al. Parametrization and grid deformation techniques for flying-wing aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1480-1490(in Chinese).
[32] CHEN J T, ZHANG Y B, ZHOU N C, et al. Numerical investigations of the high-lift configuration with MFlow solver[J]. Journal of Aircraft, 2015, 52(4):1051-1062.
[33] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43:357-372.
[34] KIM J S, KWON O J. Improvement on block LU-SGS scheme for unstructured mesh Navier-Stokes computations:AIAA-2002-1061[R]. Reston, VA:AIAA, 2002.
[35] SPALART S R. A one-equation turbulence model for aerodynamic flows:AIAA-1992-0439[R]. Reston, VA:AIAA, 1992.
[36] GONG X Q, CHEN J T, ZHOU N C, et al. The effects of turbulence model corrections on drag prediction of NASA common research model:AIAA-2014-4371[R]. Reston, VA:AIAA, 2014.
[37] KAMKAR S J, WISSINK A M, SANKARAN V, et al. Feature-driven Cartesian adaptive mesh refinement for vortex-dominated flows[J]. Journal of Computational Physics, 2011, 230:6271-6298.
[38] PASCHAL K, GOODMAN W, MCGHEE R, et al. Evaluation of tunnel sidewall boundary-layer-control systems for high-lift airfoil testing:AIAA-1991-3243[R]. Reston, VA:AIAA, 1991.
[39] 周云龙, 刘伟, 董义道, 等. 五阶HWCNS在低速复杂流场中的应用[J]. 国防科技大学学报, 2016, 38(4):1-7. ZHOU Y L, LIU W, DONG Y D, et al. Application of fifth-order accurate HWCNS for low-speed complex flow field[J]. Journal of National University of Defense Technology, 2016, 38(4):1-7(in Chinese).
[40] CHU J, LUCKRING J. Experimental surface pressure data obtained on 65° delta wing across Reynolds number and Mach number ranges, Volume 1-Sharp leading edge:NASA TM 4645[R]. Washington, D.C.:NASA Langley Research Center, 1996.