Fluid Mechanics and Flight Mechanics

Robust adaptation techniques for unstructured hybrid mesh

  • TANG Jing ,
  • CUI Pengcheng ,
  • JIA Hongyin ,
  • LI Bin ,
  • LI Huan
Expand
  • 1. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2019-01-08

  Revised date: 2019-02-03

  Online published: 2019-02-26

Abstract

Numerical schemes, turbulence models, and computational mesh are the three main factors that affect the precision of CFD simulation. Mesh adaptation based on the information of flow field has the ability to dynamically optimize the mesh, which is considered by NASA as a vital technique for the development of CFD in the future. Aimed at the unstructured hybrid mesh, three critical techniques, including the distribution optimization of mesh elements, surface mesh projection onto geometry, and volume mesh conformal deformation, are proposed to establish a robust adaptation system with high geometry fidelity. First, the distribution optimization technique based on polyhedral elements with standard faces are developed to improve the robustness and the universality of the adaptation system. Next, the local surface reconstruction method which relies only on the points of surface mesh is developed. The new inserted surface points can be parametrically projected onto the geometry, eliminating the dependency of mesh adaptation on the CAD system. Then, the improved distance function method is adopted to rapidly match the volume mesh elements to the projected surface mesh. Finally, combined with the mesh adaptation based on the flow features detector, the flow simulation with the second order finite volume method is carried out for the 30P30N airfoil and the delta-wing with a large angle of attack. The numerical results show that, after the mesh optimization with mesh adaptation proposed in this paper, both the convergence performance and precision of the flow simulation are significantly improved.

Cite this article

TANG Jing , CUI Pengcheng , JIA Hongyin , LI Bin , LI Huan . Robust adaptation techniques for unstructured hybrid mesh[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(10) : 122894 -122894 . DOI: 10.7527/S1000-6893.2019.22894

References

[1] BAKER T J. Mesh generation:Art or science[J]. Progress in Aerospace Sciences, 2005, 41(1):29-63.
[2] SLOTNIK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aeroscience:NASA/CR-2014-218178[R]. Washington, D.C.:NASA, 2014.
[3] THOMPSON J F. A survey of dynamically-adaptive grids in the numerical solution of partial differential equations[J]. Applied in Numerical Mathematics, 1985, 1(1):3-37.
[4] ROY C J. Review of discretization error estimators in scientific computing:AIAA-2010-0126[R]. Reston, VA:AIAA, 2010.
[5] FIDKOWSKI K J, DARMOFAL D L. Review of output-based error estimation and mesh adaptation in computational fluid dynamics[J]. AIAA Journal, 2011, 49(4):673-694.
[6] ALAUZET F, LOSEILLE A. A decade of progress on anisotropic mesh adaptation for computational fluid dynamics[J]. Computer-Aided Design, 2016, 72:13-39.
[7] PARK M A, KRAKOS J A, MICHAL T, et al. Unstructured grid adaptation:Status, potential impacts, and recommended investments toward CFD vision 2030[C]//46th AIAA Fluid Dynamics Conference. Reston, VA:AIAA, 2016.
[8] 阎超, 于剑, 徐晶磊, 等. CFD模拟方法的发展成就与展望[J].力学进展, 2011, 41(5):562-589. YAN C, YU J, XU J L, et al. On the achievements and prospects for the methods of computational fluid dynamics[J]. Advances in Mechanics, 2011, 41(5):562-589(in Chinese).
[9] CHEN J, ZHENG J, ZHENG Y, et al. Tetrahedral mesh improvement by shell transformation[J]. Engineering with Computers, 2017, 33(3):393-414.
[10] SI H, GOERIGK N. On tetrahedralisations of generalized chazelle polyhedra with interior steiner points[J]. Computer-Aided Design, 2018, 103(1):61-72.
[11] 崔鹏程, 邓有奇, 唐静, 等. 基于伴随方程的网格自适应及误差修正[J]. 航空学报, 2016, 37(10):2992-3002. CUI P C, DENG Y Q, TANG J, et al. Adjoint equations-based grid adaptation and error correction[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):2992-3002(in Chinese).
[12] LINN R V, AWRUCH A M. Edge-based anisotropic mesh adaptation of unstructured meshes with applications to compressible flows[J]. Engineering with Computers, 2017, 33:1007-1025.
[13] ALAUZET F, LOSEILLE A, MARCUM D, et al. Assessment of anisotropic mesh adaptation for high-lift prediction of the HL-CRM configuration[C]//23rd AIAA Computational Fluid Dynamics Conference. Reston, VA:AIAA, 2017.
[14] ALRUTZ T. Hybrid grid adaptation in TAU[C]//Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2005:115.
[15] JOUBARNE E, GUIBAULT F, BRAUN O, et al. Numerical capture of wing tip vortex improved by mesh adaptation[J]. International Journal for Numerical Methods in Fluids, 2009, 67(1):8-32.
[16] LEPAGE C Y, SUERICH-GULICK F, HABASHI W G. Anisotropic 3-D mesh adaptation on unstructured hybrid meshes:AIAA-2002-14318[R]. Reston, VA:AIAA, 2002.
[17] PARK M A. Three-dimensional turbulent RANS adjoint-based error correction:AIAA-2003-3849[R]. Reston, VA:AIAA, 2003.
[18] 李立, 白文, 梁益华. 基于伴随方程方法的非结构网格自适应技术及应用[J]. 空气动力学学报, 2011, 29(3):316-309. LI L, BAI W, LIANG Y H. An adjoint-based method for unstructured mesh adaptation and its applications[J]. Acta Aerodynamica Sinica, 2011, 29(3):316-309(in Chinese).
[19] 唐静, 郑鸣, 邓有奇, 等. 网格自适应技术在复杂外形流场模拟中的应用[J]. 计算力学学报, 2015, 32(6):752-757. TANG J, ZHENG M, DENG Y Q, et al. Grid adaptation for flow simulation of complicated configuration[J]. Chinese Journal of Computational Mechanics, 2015, 32(6):752-757(in Chinese).
[20] SAHNI O, OVCHARENKO A, CHITALE K C, et al. Parallel anisotropic mesh adaptation with boundary layers for automated viscous flow simulations[J]. Engineering with Computers, 2017, 33:767-795.
[21] OVCHARENKO A, CHITALE K, SAHNI O, et al. Parallel adaptive boundary layer meshing for CFD analysis[C]//Proceedings of the 21st International Meshing Roundtable. Berlin:Springer, 2013:455.
[22] YANG H Q, CHEN Z J, PRZEKWAS A. Adaptive mesh refinement with high-order scheme for an unstructured pressure-based solver:AIAA-2014-0077[R]. Reston, VA:AIAA, 2014.
[23] LIU Z, YANG Y, GONG A, et al. Unstructured adaptive grid refinement for flow feature capture[J]. Procedia Engineering, 2015, 99:477-483.
[24] WOOPEN M, MAY G, SCHÜTZ J. Adjoint-based error estimation and mesh adaptation for hybridized discontinuous Galerkin methods[J]. International Journal for Numerical Methods in Fluids, 2014, 76(3):811-834.
[25] 张贺, 钟诚文, 宫建, 等. 气体动理论BGK格式的网格自适应方法[J]. 航空学报, 2014, 35(3):687-694. ZHANG H, ZHONG C W, GONG J, et al. Adaptive mesh refinement for gas-kinetic BGK scheme[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):687-694(in Chinese).
[26] SENGUTTUVAN V, CHALASANI S, LUKE E A, et al. Adaptive mesh refinement using general elements:AIAA-2005-0927[R]. Reston, VA:AIAA, 2005.
[27] 张扬, 张来平, 赫新, 等. 基于自适应混合网格的脱体涡模拟[J]. 航空学报, 2016, 37(12):3605-3614. ZHANG Y, ZHANG L P, HE X, et al. Detached eddy simulation based on adaptive hybrid grids[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3605-3614(in Chinese).
[28] MOXEY D, GREEN M D, SHERWIN S J, et al. An isoparametric approach to high-order curvilinear boundary-layer meshing[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 23(7):636-650.
[29] HINDENLANG F, NEUDORFER J, GASSNER G, et al. Unstructured three-dimensional high order grids for discontinuous Galerkin schemes:AIAA-2011-3853[R]. Reston, VA:AIAA, 2011.
[30] XU J, CHERNIKOV A N. Automatic curvilinear quality mesh generation driven by smooth boundary and guaranteed fidelity[J]. Procedia Engineering, 2014, 82:200-212.
[31] 唐静, 邓有奇, 马明生, 等. 飞翼气动优化中参数化和网格变形技术研究[J]. 航空学报, 2015, 36(5):1480-1490. TANG J, DENG Y Q, MA M S, et al. Parametrization and grid deformation techniques for flying-wing aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1480-1490(in Chinese).
[32] CHEN J T, ZHANG Y B, ZHOU N C, et al. Numerical investigations of the high-lift configuration with MFlow solver[J]. Journal of Aircraft, 2015, 52(4):1051-1062.
[33] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43:357-372.
[34] KIM J S, KWON O J. Improvement on block LU-SGS scheme for unstructured mesh Navier-Stokes computations:AIAA-2002-1061[R]. Reston, VA:AIAA, 2002.
[35] SPALART S R. A one-equation turbulence model for aerodynamic flows:AIAA-1992-0439[R]. Reston, VA:AIAA, 1992.
[36] GONG X Q, CHEN J T, ZHOU N C, et al. The effects of turbulence model corrections on drag prediction of NASA common research model:AIAA-2014-4371[R]. Reston, VA:AIAA, 2014.
[37] KAMKAR S J, WISSINK A M, SANKARAN V, et al. Feature-driven Cartesian adaptive mesh refinement for vortex-dominated flows[J]. Journal of Computational Physics, 2011, 230:6271-6298.
[38] PASCHAL K, GOODMAN W, MCGHEE R, et al. Evaluation of tunnel sidewall boundary-layer-control systems for high-lift airfoil testing:AIAA-1991-3243[R]. Reston, VA:AIAA, 1991.
[39] 周云龙, 刘伟, 董义道, 等. 五阶HWCNS在低速复杂流场中的应用[J]. 国防科技大学学报, 2016, 38(4):1-7. ZHOU Y L, LIU W, DONG Y D, et al. Application of fifth-order accurate HWCNS for low-speed complex flow field[J]. Journal of National University of Defense Technology, 2016, 38(4):1-7(in Chinese).
[40] CHU J, LUCKRING J. Experimental surface pressure data obtained on 65° delta wing across Reynolds number and Mach number ranges, Volume 1-Sharp leading edge:NASA TM 4645[R]. Washington, D.C.:NASA Langley Research Center, 1996.
Outlines

/