Fluid Mechanics and Flight Mechanics

Uniform pitching motion and angular rate effects on transverse jet interaction

  • LAI Jiang ,
  • ZHAO Zhongliang ,
  • WANG Xiaobing ,
  • LI Hao ,
  • LI Yuping
Expand
  • High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2018-12-21

  Revised date: 2019-01-07

  Online published: 2019-01-28

Supported by

National Natural Science Foundation of China (11532016)

Abstract

To investigate the effect of motion on transverse jet interaction, steady and unsteady numerical simulations are performed on a missile model at fixed angle of attack and with uniform pitching motion.To study the differences between steady and unsteady cases, this paper analyzes the characteristics of transverse jet interaction, including typical interaction flow topology in the vicinity of nozzle exit, streamlines and pressure distribution on model surface, pressure changes along centralline. The results show that the effect of pitching motion and its angular rate on flow topology, pressure platform, and rudder surface varies with the change of the motion direction and the range of angle of attack. At low and moderate angles, the effects are mainly in the upstream separation area and rear bending barrel shock, where as the location of bow shock wave changes significantly at high angle of attack. Unsteady hysteresis in aerodynamic characteristics and transverse jet interaction are induced by pitching motion and has been enhanced with an increasing pitch angular rate. The pitch moment amplification factor is influenced more significantly by motion during high angles than during low angles.

Cite this article

LAI Jiang , ZHAO Zhongliang , WANG Xiaobing , LI Hao , LI Yuping . Uniform pitching motion and angular rate effects on transverse jet interaction[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(10) : 122866 -122866 . DOI: 10.7527/S1000-6893.2019.22866

References

[1] KUMAR D, STOLLERY J L, SMITH A. Hypersonic jet control effectiveness:AIAA-1995-6066[R]. Reston, VA:AIAA,1995.
[2] KONTIS K, STOLLERY J L. Control effectiveness of a jet-slender body combination at hypersonic speeds:AIAA-1996-2470[R]. Reston, VA:AIAA,1996.
[3] 魏明英, 李陟, 周荻,等. 防空导弹直接侧向力/气动力复合控制技术[M]. 北京:中国宇航出版社, 2012. WEI M Y, LI Z, ZHOU D, et al. Combined control technology of direct transverse force and aerodynamic force for air-defense missile[M]. Beijing:China Aerospace Publishing House, 2012(in Chinese).
[4] CASSEL L A. Applying jet interaction technology[J]. Journal of Spacecraft and Rockets, 2003, 40(4):523-537.
[5] DICKMANN D A, LU F K. Shock/boundary-layer interaction effects on transverse jets in crossflow over a flat plate[J]. Journal of Spacecraft and Rockets, 2009, 46(6):1132-1141.
[6] BRANDEIS J. Experimental investigation of side-jet steering for supersonic and hypersonic missiles[J]. Journal of Spacecraft and Rockets, 1996, 33(3):346-350.
[7] SRIVASTAVA B. Lateral jet control of supersonic missile computational and experimental comparisons[J]. Journal of Spacecraft and Rockets, 1998, 35(2):140-146.
[8] 王彤, 白玉平. 高速喷流干扰及控制技术研究[J]. 实验流体力学, 2010, 24(6):22-26. WANG T, BAI Y P. The investigation of high-speed jet interference and control technique[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(6):22-26(in Chinese).
[9] 陈坚强, 江定武. 侧向喷流数值模拟精度及实验验证研究[J]. 空气动力学学报, 2010, 28(4):421-425. CHEN J Q, JIANG D W. The study on the precision of numerical simulation for lateral jets flow and the experiment validation[J]. Acta Aerodynamica Sinica, 2010, 28(4):421-425(in Chinese).
[10] SPAID F W. Aerodynamic interference induced by reaction controls:AGARD-AG-173[R]. Paris:AGARD, 1973.
[11] 李斌, 王学占, 刘仙名. 大攻角侧向多喷干扰流场特性数值模拟[J].航空学报,2015,36(9):2828-2839. LI B, WANG X Z, LIU X M. Numerical investigation of multi-lateral jets interactions flow characteristics at high angle of attack[J]. Acta Aeronautica et Astronautica Sinica, 2015,36(9):2828-2839(in Chinese).
[12] ZHEN H P, GAO Z X, LEE C H. Numerical investigation on jet interaction witha compression ramp[J]. Chinese Journal of Aeronautics, 2013, 26(4):898-908.
[13] 李其畅, 赵忠良. 模型大迎角高速动态特性与数据精度分析[J].航空学报,2016,37(8):2594-2602. LI Q C, ZHAO Z L. Analysis of dynamic performance and test data precision of models with high angle of attack[J]. Acta Aeronautica et Astronautica Sinica, 2016,37(8):2594-2602(in Chinese).
[14] SIMON J M. Dynamic derivative data for high angle of attack simulation:AIAA-1992-4355[R]. Reston, VA:AIAA,1992.
[15] 汪清.飞机大迎角非定常气动力建模研究进展[J].航空学报,2016,37(8):2331-2347. WANG Q. A review of unsteady aerodynamic modeling of aircrafts at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica,2016,37(8):2331-2347(in Chinese).
[16] 唐志共.横向喷流干扰/控制研究进展[J].实验流体力学,2010,24(4):1-6. TANG Z G. The investigation and expectation on lateral jet interaction/control[J].Journal of Experiments in Fluid Mechanics, 2010,24(4):1-6(in Chinese).
[17] 杨彦广. 高超声速主流中的横向喷流干扰效应研究[D].绵阳:中国空气动力研究与发展中心, 2003. YANG Y G. Aerodynamic interaction research of lateral jet in hypersonic external flow[D]. Mianyang:China Aerodynamics Research and Development Center, 2003. (in Chinese)
[18] JABARAJ S, FRANK F, KAREN R H.Unsteady aerodynamic simulations of a finned projectile at a supersonic speed with jet interaction:AIAA-2014-3024[R]. Reston, VA:AIAA,2014.
[19] BERNHARD S, FRANK S, ALI G. Hot-gas side jet in a supersonic freestream[J]. Journal of Spacecraft and Rockets, 2010, 47(6):957-965.
[20] 赵海洋, 刘伟, 任兵. 非定常俯抑振荡下的横向喷流数值模拟[J]. 力学季刊, 2007, 28(3):363-368. ZHAO H Y, LIU W, REN B. Numerical simulation of lateral jets with forced pitching oscillation[J]. Chinese Quarterly of Mechanics, 2007, 28(3):363-368(in Chinese).
[21] 陈坚强, 陈琦, 谢昱飞,等. 侧向喷流与舵面运动相互干扰的数值模拟研究[J]. 宇航学报, 2014, 35(5):515-520. CHEN J Q, CHEN Q, XIE Y F, et al. Numerical study on the interaction of lateral jet and rudder movement[J]. Journal of Astronautics, 2014, 35(5):515-520(in Chinese).
[22] 赖江, 赵忠良. 超声速姿态控制横向喷流干扰特性研究[C]//首届中国空气动力学大会, 2018:515-516. LAI J, ZHAO Z L. Investigation of supersonic transverse jet interaction characteristics for attitude control[C]//The 1st Chinese Conference of Aerodynamics, 2018:515-516(in Chinese).
[23] 王晓冰. 高机动飞行器气动/运动耦合特性数值模拟研究[D]. 绵阳:中国空气动力研究与发展中心, 2015. WANG X B. Numerical investigation of aerodynamics and flight dynamics coupling for flight vehicle with high maneuverability[D]. Mianyang:China Aerodynamics Research and Development Center, 2015(in Chinese).
Outlines

/