Material Engineering and Mechanical Manufacturing

Determining position of reaming interface in cold expansion FEM simulation

  • DU Xu ,
  • ZHANG Teng ,
  • HE Yuting ,
  • ZHANG Tianyu ,
  • ZHANG Sheng ,
  • FENG Yu
Expand
  • Aeronautics Engineering College, Air Force Engineering University, Xi'an 710038, China

Received date: 2018-09-14

  Revised date: 2018-10-08

  Online published: 2018-12-27

Supported by

National Natural Science Foundation of China (51475470,51805538)

Abstract

The finite element simulation of split sleeve cold expansion process is the prerequisite for obtaining residual stress distribution and predicting fatigue life. In the finite element modeling stage, setting reaming interface between the reaming element layer and the matrix element is the key to simulate the reaming process of final hole. Through elastic-plastic mechanical analysis of cold expansion, a two-dimension residual stress and strain analysis method for mandrel, split sleeve and plate is established. Based on the radial displacement of micro-elements at different positions, a relative position calculation model of the reaming interface is established. Sensitivity analysis of key parameters is carried out to quantitatively study the influence of key parameters on residual stress distribution and radial displacement. For the finite element modeling of hole cold expansion process, this study provides a convenient and reliable method for determining the relative position of reaming interface between the reaming element layer and the matrix element.

Cite this article

DU Xu , ZHANG Teng , HE Yuting , ZHANG Tianyu , ZHANG Sheng , FENG Yu . Determining position of reaming interface in cold expansion FEM simulation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(4) : 422674 -422674 . DOI: 10.7527/S1000-6893.2018.22674

References

[1] Fatigue Technology. Cold expansion of holes using the standard split sleeve system and countersink cold expansionTM(CsCxTM):FTI Process Specification 8101 Revision J[S]. Seattle:Fatigue Technology Inc., 2014.
[2] MAXIMOV J T, DUNCHEVA G V, AMUDJEV I M. A novel method and tool which enhance the fatigue life of structural components with fastener holes[J]. Engineering Failure Analysis, 2013, 31(31):132-143.
[3] 王强, 陈雪梅, 张文光, 等. A-100钢开缝衬套孔挤压强化残余应力场[J]. 中国表面工程, 2011, 24(5):64-67. WANG Q, CHEN X M, ZHANG W G, et al. Residual stress induced by cold expansion with sleeve process of A-100 steel[J]. China Surface Engineer, 2011, 24(5):64-67(in Chinses).
[4] 张飞. 带冷挤压孔7A04-T6铝合金板件残余应力及疲劳寿命试验与仿真研究[D]. 西安:空军工程大学, 2015:45-78. ZHANG F. Experiment and simulation of residual stress and fatigue life of 7A04-T6 aluminum alloy plate with cold expanded hole[D]. Xi'an:Air Force Engineering University, 2015:45-78(in Chinese).
[5] GUO W L. Elastic-plastic analysis of a finite sheet with a cold-worked hole[J]. Engineering Fracture Mechanics, 1993, 46(3):465-472.
[6] 肖寿庭, 周岳泉, 傅祥炯. 3. 5%NaCl水溶液腐蚀环境中冷胀孔抗疲劳强化效果的试验研究[J]. 机械强度, 1996, 18(1):41-43. XIAO S T, ZHOU Y Q, FU X J. An experimental study on enhancement effectiveness of the cold-expansion holes against fatigue in corrosion environment[J]. Journal of Mechanical Strength, 1996, 18(1):41-43(in Chinese).
[7] 王幸, 徐武, 张晓晶, 等. TC4板冷挤压强化寿命预测与试验验证[J]. 浙江大学学报(工学版), 2017, 51(8):1610-1618. WANG X, XU W, ZHANG X J, et al. Numerical prediction and experimental verification of fatigue life of TC4 plate strengthened by cold expansion[J]. Journal of Zhejiang University(Engineering Science), 2017, 51(8):1610-1618(in Chinese).
[8] 朱海. 挤压孔连接件疲劳寿命分析的应力场强法[D]. 南京:南京航空航天大学, 2014, 45-51. ZHU H. Stress field intensity approach for fatigue life analysis cold extruded hole[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014, 45-51(in Chinese).
[9] SUN Y, HU W P, SHEN F, et al. Numerical simulations of the fatigue damage evolution at a fastener hole treated by cold expansion or with interference fit pin[J]. International Journal of Mechanical Sciences, 2016, 107:188-200.
[10] MATTHEW T K, JOY R, JUDE H R, et al. Observations and analysis of fatigue crack growth from cold expanded holes[C]//Proceedings of the 8th Joint NASA/FAA/DoD Conference on Aging Aircraft. Palm Springs:Aging Aircraft, 2005.
[11] RENAUD G, LIAO M, LIU G. Verification and validation of analytical methods to determine life improvement factor induced by engineering residual stresses[C]//Proceedings of the 29th ICAF Symposium. Nagoya:International Committee on Aeronautical Fatigue and Structural Integrity, 2017.
[12] BONI L, FANTERIA D, LAZZERI L, et al. Numerical prediction of fatigue crack propagation in Cold-Expanded holes[C]//29th ICAF Symposium. Nagoya:International Committee on Aeronautical Fatigue and Structural Integrity, 2017.
[13] YAN W Z, WANG X S, GAO H S, et al. Effect of split sleeve cold expansion on cracking behaviors of titanium alloy TC4 holes[J]. Engineering Fracture Mechanics, 2012, 88:79-89.
[14] 关迪. 金属疲劳的损伤力学分析及概率特性研究[D]. 西安:西北工业大学, 2013:65-88. GUAN D. Damage mechanical analysis for metal fatigue with uncertainties[D]. Xi'an:Northwest Polytechnical University, 2013:65-88(in Chinese).
[15] 王幸, 张晓晶, 张丽娜. 强化中心孔试样谱载疲劳寿命预测与试验验证[J]. 科学技术与工程, 2017, 17(8):57-65. WANG X, ZHANG X J, ZHANG L N. Fatigue life prediction and experimental verification of the strengthened center hole sample under spectrum loading[J]. Science Technology and Engineering, 2017, 17(8):57-65(in Chinese).
[16] 李庆林. 开缝衬套冷挤压强化孔疲劳寿命仿真及其预测系统开发[D]. 南京:南京航空航天大学, 2008. LI Q L. Fatigue life simulation and prediction system development for cold expanded holes with split sleeve[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2008(in Chinese).
[17] 程远庆. CFRP孔冷挤压仿真与试验研究[D]. 南京:南京航空航天大学, 2014. CHENG Y Q. Simulation and experiment researches on cold expansion process of CFRP[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014(in Chinese).
[18] 王燕礼, 朱有利, 曹强. 孔挤压强化技术研究进展与展望[J]. 航空学报, 2018, 39(2):6-22. WANG Y L, ZHU Y L, CAO Q. Progress and prospect of researches on hole cold expansion technique[J]. Acta Aeronautica et Astronactica Sinica, 2018, 39(2):6-22(in Chinese).
[19] FU Y, GE E D, SU H H, et al. Cold expansion technology of connection holes in aircraft structures:A review and prospect[J]. Chinese Journal of Aeronautics, 2015, 28(4):961-973.
[20] LIU Y S, SHAO X J, LIU J, et al. Finite element method and experimental investigation on the residual stress fields and fatigue performance of cold expansion hole[J]. Materials & Design, 2010, 31(3):1208-1215.
[21] CHAKHERKOU T N, AGHDAM A B, AKBARI A, et al. Analysis of cold expansion fastener holes subjects to short time creep:Finite element modelling and fatigue tests[J]. Material & Design, 2010, 31(6):2858-2866.
[22] CHAKHERLOU T N, SHAKOURI M, AGHDAM A B, et al. Effect of cold expansion on the fatigue life of Al 2024-T3 in double shear lap joints:Experimental and numerical investigations[J]. Material and Design, 2012, 33:185-196.
[23] ZHANG Y, FITZPATRICK M E, EDWARDS L. Analysis of the residual stress around a cold-expanded fastener hole in a finite plate[J]. Strain, 2005, 41(2):59-70.
[24] BUDIANSKY B. An exact solution to an elastic-plastic stress-concentration problem[J]. Journal of Applied Mathematics and Mechanics, 1971, 35(1):18-25.
[25] HOUGHTON S J, CAMPBELL S K. Identifying the residual stress field developed by hole cold expansion using finite element analysis[J]. Fatigue & Fracture of Engineering Materials and Structures, 2012, 35(1):74-83.
[26] ISMONOV S, DANIEWICZ S R, NEWMAN J C, et al. Three dimensional finite element analysis of a split-sleeve cold expansion process[J]. Journal of Engineering materials and Technology, 2009, 131(3):031007-031014.
[27] 徐芝纶. 弹性力学简明教程[M]. 3版.北京:高等教育出版社, 2002:63-67. XU Z L. A concise course in elasticity[M]. 3rd ed. Beijing:Higher Education Press, 2002:63-67(in Chinese).
[28] 陈明祥. 弹塑性力学[M]. 北京:科学出版社, 2007:106-107. CHEN M X. Elasticity and plasticity[M]. Beijing:Science Press, 2007:106-107(in Chinese).
[29] BALL D L. Elastic-plastic stress analysis of cold expanded fastener holes[J]. Fatigue & Fracture of Engineering Materials & Structures, 1995, 18(1):47-63.
[30] AMROUCHE A. Cold expansion effect on the initiation and propagation of the fatigue crack[J]. International Journal of Fatigue, 2003, 25(9-11):949-954.
[31] 傅仕伟. 孔的冷挤压抗疲劳增寿机理研究[D]. 南京:南京航空航天大学, 1996:38-89. FU S W. Research on prolonging mechanism of life in anti-fatigue coldworking of hole[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 1996:38-89(in Chinese).
Outlines

/