Aiming at the requirement of accurate simulation of non-uniform thermal environment in structural thermal test, a fast power optimization method of quartz lamp array based on the linear analysis model is established, based on the theoretical analysis of heat flux distribution of quartz lamp array. The power optimization of non-uniform aerodynamic heating simulated by quartz lamp array is analysed. The results show that the linear analysis method can optimize the power of quartz lamp arrays efficiently and effectively, obtain good results for the gentle heat flux distribution, and obtain the accordant heat flux optimization results as the genetic algorithm for the large gradient heat flux distribution. Since the power optimization results of non-uniform aerodynamic heating simulation are sensitive to the heat flux input, it is necessary to select the appropriate range and number of measuring points to obtain a relatively stable coefficient matrix. The results are of important reference significance for the power optimization of quartz lamp array that simulating non-uniform aerodynamic heating.
ZHU Yandan
,
WEI Dong
,
LIU Shenshen
,
ZENG Lei
,
GUI Yewei
. Power optimization of non-uniform aerodynamic heating simulated by quartz lamp array[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019
, 40(6)
: 122761
-122761
.
DOI: 10.7527/S1000-6893.2018.22761
[1] HUDSON L, CRAIG S. Thermal-mechanical testing of hypersonic vehicle structures[C]//Workshop of Materials and Structure for Hypersonic Flight, 2007.
[2] 任青梅. 热/结构试验技术研究进展[J]. 飞航导弹, 2012(2):91-96. REN Q M. Review of thermal/structure test technique[J]. Aerodynamic Missile Journal, 2012(2):91-96(in Chinese).
[3] TURNER T L, ASH R L. Analysis of the thermal environment and thermal response associated with thermal acoustic testing:AIAA-1990-0975[R]. Reston, VA:AIAA, 1990.
[4] TURNER T L, ASH R L. An analysis of the radiation field beneath a bank of tubular quartz lamp:NASA-CR-191551[R]. Washington, D.C.:NASA, 1994.
[5] TURNER T L, ASH R L. Prediction of the thermal environment and thermal response of simple panels exposed to radiant heat[J]. Journal of the American Pharmaceutical Association, 1989, 27(3):258-263.
[6] TURNER T L, ASH R L. Numerical and experimental analyses of the radiant heat flux produced by quartz heating systems:NASA-TP-3387[R]. Washington, D.C.:NASA, 1994.
[7] 杨晓宁, 孙玉玮, 余谦虚. 提高红外灯阵热流模拟均匀性的优化设计方法[J]. 航天器环境工程, 2012, 29(1):27-31. YANG X N, SUN Y W, YU Q X. The optimized design for improving flux uniformity of infrared lamp array[J]. Spacecraft Environment Engineering, 2012, 29(1):27-31(in Chinese).
[8] 张伟, 张正平, 李海波, 等. 高超声速飞行器结构热试验技术进展[J]. 强度与环境, 2011, 38(1):1-8. ZHANG W, ZHANG Z P, LI H B, et al. Progress on thermal test technique of hypersonic vehicle structures[J]. Structure & Environment Engineering, 2011, 38(1):1-8(in Chinese).
[9] 李翔, 傅波. 高超声速飞行器复杂结构热试验技术[J]. 航空学报, 2016, 37(S1):73-79. LI X, FU B. Thermal test technique of complex structure of hypersonic aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1):73-79(in Chinese).
[10] 吴大方, 王岳武, 高镇同, 等. 1 500℃高温氧化环境下C/SiC复合材料结构的热/力联合试验[J]. 复合材料学报, 2015, 32(4):1083-1091. WU D F, WANG Y W, GAO Z T, et al. Thermal-mechanical joint test of C/SiC composite structure in high-temperature/oxidation environment up to 1500℃[J]. Acta Materiae Compositae Sinica, 2015, 32(4):1083-1091(in Chinese).
[11] GROSVELD F W, RIZZI S A, RICE C E. Dynamic response of X-37 hot structure control surfaces exposed to controlled reverberant acoustic excitation:NASA-TM-213519[R]. Washington, D.C.:NASA, 2005.
[12] HUDSON L. Thermal-mechanical testing of hypersonic vehicle structures:NASA-TM-13159[R]. Washington, D.C.:NASA, 2008.
[13] JENKINS J M, QUINN R D. Historical perspective of the YF-12A thermal loads and structures program:NASA-TM-104317[R]. Washington, D.C.:NASA, 1996.
[14] 朱言旦, 刘骁, 曾磊, 等. 大面积气动加热的石英灯阵模拟优化设计研究[J]. 航空学报, 2017, 38(9):121159. ZHU Y D, LIU X, ZENG L, et al. Study on optimization design of aerodynamic heating of large area simu-lated by quartz lamp array[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9):121159(in Chinese).
[15] 朱言旦, 刘骁, 曾磊, 等. 石英灯热流分布计算方法对比研究[C]//工程热物理年会传热传质分会, 2017. ZHU Y D, LIU X, ZENG L, et al. Comparison research of methods for quartz lamp heat flux simulation[C]//Heat and Mass Transfer Division of Annual Meeting of China Engineering Thermophysics, 2017(in Chinese).
[16] 朱言旦, 曾磊, 董威, 等. 石英灯阵热流分布规律计算与试验研究[J]. 宇航学报, 2017, 38(10):1131-1138. ZHU Y D, ZENG L, DONG W, et al. Computational and experimental study of quartz lamp array heat flux distribution[J]. Journal of Astronautics, 2017, 38(10):1131-1138(in Chinese).