[1] 谭兆光, 陈迎春, 李杰, 等. 机体/动力装置一体化分析中的动力影响效应数值模拟[J]. 航空动力学报, 2009, 24(8):1766-1772. TAN Z G, CHEN Y C, LI J, et al. Numerical simulation method for the powered effects in airframe/propulsion integration analysis[J]. Journal of Aerospace Power, 2009, 24(8):1766-1772(in Chinese).
[2] MERN J, AGARWAL R. Numerical study of three-stream nozzle exhaust flow from a simplified model of a turbofan nacelle:AIAA-2014-4013[R]. Reston, VA:AIAA, 2014.
[3] KIM S M, YANG S S, LEE D S, et al. Three-dimensional flow calculation around/through isolated nacelle with an actuator disk modeling:AIAA-1999-2668[R]. Reston, VA:AIAA, 1999.
[4] 何小龙, 白俊强, 夏露, 等. 基于EFFD方法的自然层流短舱优化设计[J]. 航空动力学报, 2014, 29(10):2311-2320. HE X L, BAI J Q, XIA L, et al. Natural laminar flow nacelle optimization design based on EFFD method[J]. Journal of Aerospace Power, 2014, 29(10):2311-2320(in Chinese).
[5] 乔磊, 白俊强, 华俊, 等. 大涵道比翼吊发动机喷流气动干扰研究[J]. 空气动力学学报, 2014, 32(2):433-438. QIAO L, BAI J Q, HUA J, et al. Interference effects of wing-mounted high bypass ratio nacelle with engine power[J]. Acta Aerodynamica Sinica, 2014, 32(2):433-438(in Chinese).
[6] 龚志斌, 李杰, 蒋胜矩, 等. 发动机位置对大型运输机动力增升效能的影响研究[J]. 西北工业大学学报, 2015, 33(4):560-565. GONG Z B, LI J, JIANG S J, et al. Numerical investigation of the influence of engine position on powered high-lift effects for large transport aircraft[J]. Journal of Northwestern Polytechnical University, 2015, 33(4):560-565(in Chinese).
[7] HILL G A, KANDIL O A. Aerodynamic investigation of an advanced over-the-wing nacelle transport aircraft configuration:AIAA-2007-0670[R]. Reston, VA:AIAA, 2007.
[8] SAITOH T, KIM H J, TAKENAKA K, et al. Multi-point design of wing-body-nacelle-pylon configuration:AIAA-2006-3461[R]. Reston, VA:AIAA, 2006.
[9] 胡仞与, 张东晕, 施永毅. 民机低速风洞试验通气发房设计[J]. 民用飞机设计与研究, 2014(4):7-9. HU R Y, ZHANG D Y, SHI Y Y. Design of through-flow nacelle for low-speed wind tunnel testing of civil aircraft[J]. Civil Aircraft Design and Research, 2014(4):7-9(in Chinese).
[10] 黑少华, 江声兰. 民用大涵道比发动机短舱阻力数值研究[J]. 沈阳航空航天大学学报, 2017, 34(4):48-54. HEI S H, JIANG S L. Numerical simulation on nacelle drag of turbofan engine with a large bypass ratio[J]. Journal of Shenyang Aerospace University, 2017, 34(4):48-54(in Chinese).
[11] ARIZONO H, KHEIRANDISH H R, NAKAMICHI J, et al. Transonic flutter simulation for wing-pylon-nacelle configuration using Navier-Stokes equations:AIAA-2008-1897[R]. Reston, VA:AIAA, 2008.
[12] 贾洪印, 马明生, 吴晓军, 等. 发动机进排气效应对民机构型气动特性影响[J]. 航空动力学报, 2017, 32(8):1900-1910. JIA H Y, MA M S, WU X J, et al. Study on aerodynamic characteristics of different types of civil aircrafts with engine air intake and exhaust[J]. Journal of Aerospace Power, 2017, 32(8):1900-1910(in Chinese).
[13] 郭少杰, 周培培, 王斌, 等. 动力效应对民机起飞构型气动特性影响的数值研究[J]. 航空动力学报, 2016, 31(7):1638-1648. GUO S J, ZHOU P P, WANG B, et al. Numerical investigation for influence of powered effect on aerodynamic characteristics of civil aircraft take-off configuration[J]. Journal of Aerospace Power, 2016, 31(7):1638-1648(in Chinese).
[14] GOLDEN D P, BARBER T J, CHIN W C. An axisymmetric nacelle and turboprop inlet analysis with flow-through and power simulation capabilities:AIAA-1982-0256[R]. Reston, VA:AIAA, 1982.
[15] 郭少杰, 王斌, 杨中艳, 等. 动力效应对民机高速抖振特性影响数值研究[J]. 航空工程进展, 2016, 7(3):301-308. GUO S J, WANG B, YANG Z Y, et al. Numerical investigation for the effects of power of engine on butter characteristics of a civil aircraft[J]. Advances in Aeronautical Science and Engineering, 2016, 7(3):301-308(in Chinese).
[16] TOUBIN H, SALAH E D I, MEHEUT M. Multipoint aerodynamic high fidelity shape optimization of an isolate engine nacelle:AIAA-2014-0903[R]. Reston, VA:AIAA, 2014.
[17] JOO J, TILLMAN T G, LIN R. Nacelle external drag prediction using computational fluid dynamics:AIAA-2012-3998[R]. Reston, VA:AIAA, 2012.
[18] 薛帮猛, 张文升, 孙学卫, 等. 动力干扰下宽体客机机翼多目标优化设计[J/OL]. 航空学报, 2019, 40(1):522381[2018-05-25].http://kns.cnki.net/kcms/detail/11.1929.V.20180713.1016.010.html. XUE B M, ZHANG W S, SUN X W, et al. Multi-objective wing shape optimization of wide-body civil aircraft in wing-body-pylon-powered nacelle configuration[J/OL]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522381[2018-05-25].http://kns.cnki.net/kcms/detail/11.1929.V.20180713.1016.010.html (in Chinese).
[19] KNORATH R, GEISLER R, AGOCS J, et al. Tracking the nacelle vortex above aircraft wing in the ETW at real Mach and Reynolds numbers by means of PIV:AIAA-2015-1560[R]. Reston, VA:AIAA, 2015.
[20] MAJIC F, DFRAIMSSON G, O'REILLY C. Aerodynamic performance of the adaptive nacelle inlet:AIAA-2015-3163[R]. Reston, VA:AIAA, 2015.
[21] LIN Y J, ROBINSON T, EARLY J, et al. Implementation of Menter's transition model on an isolated natural laminar flow nacelle[J]. AIAA Journal, 2011, 49(4):824-835.
[22] KANAZAKI M, YOKOKAWA Y, MURAYAMA M, et al. Efficient design exploration of nacelle chine installation in wind tunnel testing:AIAA-2008-0155[R]. Reston, VA:AIAA, 2008.