In order to evaluate a newly developed Quantum Kinetic (QK) chemical reaction model for the Direct Simulation Monte Carlo (DSMC) method, this paper implemented the model in our own DSMC software named RariHV that can numerically simulate hypersonic rarefied gas flows and performed equilibrium and non-equilibrium chemical reaction tests in a single adiabatic cell. The numerical results are in good agreement with the theory, indicating that the QK model can well predict chemically reactive flows. Furthermore, to assess the performance of the QK model in realistic flows, hypersonic chemical reaction flow passing a cylinder was computed. Computational results of temperature profile and number density profile along the stagnation line agree well with those of the Total Collision Energy (TCE)model. Compared with the common TCE model, the QK model no longer relies on the experimental reaction rate coefficients and has potential value of applications in areas with little chemical reaction data, such as deep space exploration.
LI Jin
,
GENG Xiangren
,
CHEN Jianqiang
,
JIANG Dingwu
,
LI Hongzhe
. Numerical simulation on DSMC quantum kinetic chemical reaction model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019
, 40(4)
: 122176
-122176
.
DOI: 10.7527/S1000-6893.2018.22176
[1] SCANLON T J, WHITE C, BORG M K, et al. Open-source direct simulation Monte Carlo chemistry modeling for hypersonic flows[J]. AIAA Journal, 2015, 53(6):1670-1680.
[2] HAAS B L. Fundamentals of chemistry modeling applicable to a vectorized particle simulation:AIAA-1990-1749[R]. Reston, VA:AIAA, 1990.
[3] BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[M]. Oxford:Clarendon Press, 1994.
[4] GALLIS M A, BOND R B, TORCZYNSKI J R. A kinetic-theory approach for computing chemical-reaction rates in upper-atmosphere hypersonic flows[J]. Journalof Chemical Physics, 2009, 131(12):124311.
[5] BIRD G A. The Q-K model for gas phase chemical reaction rates[J]. Physics of Fluids, 2011, 23(10):102101.
[6] WAGNILD R, GALLIS M. Continuum simulation of hypersonic flows using the quantum-kinetic chemical reaction model:AIAA-2013-3144[R]. Reston, VA:AIAA, 2013.
[7] GALLISM A, BOND R B, TORCZYNSKI J R. Assessment of collisional-energy-based models for atmospheric species reactions in hypersonic flows[J]. Journal of Thermophysics and Heat Transfer, 2010, 24(2):241-253.
[8] RAMIN Z, RAMIN K M, MAHMOUD M. A new approach for chemical reaction simulation of rarefied gas flow by DSMC method[J]. Computers and Fluids, 2016, 140:111-121.
[9] RAMIN Z, RAMIN K M, MAHMOUD M. New chemical-DSMC method in numerical simulation of axisymmetric rarefied reactive flow[J]. Physics of Fluids, 2017, 29(4):047105.
[10] 陈浩, 李林颖, 张斌, 等. Q-K模型在氮氧离解复合反应中的评估[J]. 空气动力学学报, 2018, 36(1):17-21. CHEN H, LI L Y, ZHANG B, et al. Assessment of Q-K model for nitrogen and oxygen dissociation-recombination[J]. Acta Aerodnamica Sinica, 2018, 36(1):17-21(in Chinese).
[11] 王学德, 伍贻兆, 夏健, 等. 三维非结构网格DSMC并行算法及应用研究[J]. 宇航学报, 2007, 28(6):1500-1505. WANG X D, WU Y Z, XIA J, et al. A parallel algorithm of 3D unstructured DSMC method and its application[J]. Journal of Astronautics, 2007, 28(6):1500-1505(in Chinese).
[12] 梁杰, 阎超, 杨彦广, 等. 过渡区侧向喷流干扰的并行DSMC数值模拟研究[J]. 宇航学报, 2011, 32(5):1012-1018. LIANG J, YAN C, YANG Y G, et al. Parallel DSMC simulation of lateral jet interaction in rarefied transitional region[J]. Journal of Astronautics, 2011, 32(5):1012-1018(in Chinese).
[13] 黄飞, 苗文博, 程晓丽, 等. 一种DSMC方法的并行策略[J]. 航空学报, 2014, 35(4):968-974. HUANG F, MIAO W B, CHENG X L, et al. A parallel algorithm of DSMC method[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(4):968-974(in Chinese).
[14] LI J, GENG X R, CHEN J Q, et al. Novel hybrid hard sphere model for direct simulation Monte Carlo computations[J]. Journal of Thermophysics and Heat Transfer, 2018, 32(1):156-160.
[15] LI J, GENG X R, CHEN J Q, et al. Statistical error analysis of the DSMC method taking into account the time correlation between samples[J]. Applied Mathematics and Mechanics, 2016, 37(12):1403-1409.
[16] 梁杰, 李志辉, 杜波强, 等. 大型航天器再入陨落时太阳翼气动力/热模拟分析[J]. 宇航学报, 2015, 36(12):1348-1355. LIANG J, LI Z H, DU B Q, et al. Modeling and analysis of solar array aerothermodynamics during large-scale spacecraft reentry[J]. Journal of Astronautics, 2015, 36(12):1348-1355(in Chinese).
[17] 黄飞, 苗文博, 程晓丽, 等. 一种DSMC分子仿真下的权因子预定义方法[J]. 航空学报, 2014, 35(8):2174-2181. HUANG F, MIAO W B, CHENG X L, et al. A new predefined method of particle weight in DSMC molecular simulation[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2174-2181(in Chinese).
[18] 李中华, 党雷宁, 李志辉. 高超声速化学非平衡流动Navier-Stokes/DSMC耦合算法[J]. 航空学报, 2018, 39(10):122229. LI Z H, DANG L N, LI Z H. Navier-Stokes/DSMC hybrid algorithm for hypersonic flows with chemical non-equilibrium[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10):122229(in Chinese).
[19] 靳旭红, 黄飞, 程晓丽, 等. 超低轨航天器气动特性快速预测的试验粒子Monte Carlo方法[J]. 航空学报, 2017, 38(5):120625. JIN X H, HUANG F, CHENG X L, et al. Test particle Monte Carlo method for rapid prediction of aerodynamic properties of spacecraft in lower LEO[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5):120625(in Chinese).
[20] VINCENTI W G, KRUGER C H. Introduction tophysical gas dynamics[M]. New York:Wiley, 1965.
[21] HAAS B L, MCDONALD J D. Validation of chemistry models employed in a particle simulation method[J]. Journal of Thermophysics and Heat Transfer, 1993, 7(1):42-48.