Solid Mechanics and Vehicle Conceptual Design

Thermo-modal test on an axle bearing supported rudder and identification of its supporting stiffness

  • TANG Xiaofeng ,
  • HE Zhenwei ,
  • CHANG Hongzhen ,
  • SHI Xiaoming ,
  • PAN Qiang ,
  • TANG Guoan
Expand
  • 1. Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China;
    2. Shanghai Electro-Mechanical Engineering Institute, Shanghai 201109, China;
    3. Beijing Institute of Structure and Environment Engineering, Beijing 100076, China;
    4. Shanghai Aerospace Control Technology Institute, Shanghai 201109, China

Received date: 2018-08-20

  Revised date: 2018-10-08

  Online published: 2018-11-20

Supported by

Innovation Foundation of Shanghai Aerospace Science and Technology (SAST201605)

Abstract

When hypersonic vehicles fly in atmosphere and near space for a long time, the modal characteristics of their rudders are different from their fixed wings. They are not only taking effects of the elastic module and inner thermal stress of themselves, but also taking effects of the supporting stiffness near the rudder spindles, and the supporting stiffness are also under the influence of temperatures. A rudder supported by axle bearing is studied, and the effects of temperature on supporting stiffness are taking into account. Instead of adopting fixed boundary condition at the root of the rudder, a full motion rudder supporting boundary condition is setup. A heating test case is designed, in which the rudder has the same heating condition as the previous test, but the supporting area is different. A linear relationship is obtained, showing how the temperatures rising at the two sides of the spindle have effects on supporting stiffness of the rudder. In the second test case, the identification of the linear relationship is verified as effective. With the same heating condition of the rudder, reducing the temperature of the supporting area will effectively mitigate the influence of aerodynamic heating on modal frequencies of rudder, which can be referred to by the thermal protection design of vehicle with such a rudder. Some suggestions are given for the thermal protection design for vehicles with such rudders.

Cite this article

TANG Xiaofeng , HE Zhenwei , CHANG Hongzhen , SHI Xiaoming , PAN Qiang , TANG Guoan . Thermo-modal test on an axle bearing supported rudder and identification of its supporting stiffness[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(6) : 222617 -222617 . DOI: 10.7527/S1000-6893.2018.22617

References

[1] 沈娟, 李舰. 国外高超声速技术近期研究进展[J]. 飞航导弹, 2016(12):4-7, 27. SHEN J, LI J. Recent research progress on foreign hypersonic technology[J]. Winged Missile, 2016(12):4-7, 27(in Chinese).
[2] HANK J M, MURPHY J S, MUTZMAN R C. The X-51A scramjet engine flight demonstration program:AIAA-2008-2540[R]. Reston, VA:AIAA, 2008.
[3] MCNAMARA J J, CULLER A J, CROWELL A R. Aerothermoelastic modeling considerations for hypersonic vehicles:AIAA-2009-7397[R]. Reston, VA:AIAA, 2009.
[4] 杨超, 黄超, 吴志刚, 等. 气动伺服弹性研究的进展与挑战[J]. 航空学报, 2015, 36(4):1011-1033. YANG C, HUANG C, WU Z G, et al. Progress and challenges for aeroservoelasticity research[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1011-1033(in Chinese).
[5] MCWITHEY R R, VOSTEEN L F. Effects of transient heating on the vibration frequencies of a prototype of the X-15 wing:NASA Technical Note D-362[R]. Washington, D.C.:NASA, 1960.
[6] HEEG J, GILBERT M G, POTOTZKY A S. Static & dynamic aeroelastic characterization of an aerodynamically heated generic hypersonic aircraft configuration:NASA Technical Note N91-N10320[R]. Washington, D.C.:NASA, 1990.
[7] SPIVEY N D. High-temperature modal survey of a hot-structure control surface[C]//27th International Congress of the Aeronautical Science, 2010.
[8] 李晓东, 杨文岐, 刘浩. 基于纯随机激励的热模态试验技术研究[J]. 强度与环境, 2015, 42(2):52-56. LI X D, YANG W Q, LIU H. The study of thermo-modal test technique based on true-random excitation[J]. Structure & Environment Engineering, 2015, 42(2):52-56(in Chinese).
[9] 谭光辉, 李秋彦, 邓俊. 热模态下结构固有振动特性试验及分析[J]. 航空学报, 2016, 37(S1):32-37. TAN G H, LI Q Y, DENG J. Test and analysis of natural modal characteristics of a wing model with thermal effect[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1):32-37(in Chinese).
[10] 刘浩, 李晓东, 杨文岐, 等. 高速飞行器翼面热振动试验的TARMA模型方法[J]. 航空学报, 2015, 36(7):2225-2235. LIU H, LI X D, YANG W Q, et al. Investigation of thermal vibration test on wing structure of high speed flight vehicle using TARMA model method[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2225-2235(in Chinese).
[11] 吴大方, 王岳武, 蒲颖, 等. 高超声速飞行器复合材料翼面结构1100℃高温环境下的热模态试验研究[J]. 复合材料学报, 2015, 32(2):323-331. WU D F, WANG Y W, PU Y, et al. Experimental investigation of thermal modal of composite wing structure in high-temperature environments up to 1100℃ for hypersonic aircraft[J]. Acta Meteriae Compositea Sinica, 2015, 32(2):323-331(in Chinese).
[12] 吴大方, 王岳武, 商兰, 等. 1200℃高温环境下板结构热模态试验研究与数值模拟[J]. 航空学报, 2016, 37(6):1861-1875. WU D F, WANG Y W, SHANG L, et al. Test research and numerical simulation on thermal modal of plate structure in 1200℃ high-temperature environments[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6):1861-1875(in Chinese).
[13] 邱菊, 孙秦. T尾不同支持刚度的颤振分析研究[J]. 航空计算技术, 2009, 39(3):22-24. QIU J, SUN Q. Flutter analysis of T-tail according to the different supporting stiffness[J]. Aeronautical Computing Technique, 2009, 39(3):22-24(in Chinese).
[14] 沈颖, 张鹏, 寇艳丽, 等. 基于MSC. Nastran的导弹舵面颤振分析与优化[J]. 航空兵器, 2014, 51(5):19-22. SHEN Y, ZHANG P, KOU Y L, et al. Missile rudder surface flutter analysis and optimization based on MSC. Nastran[J]. Aero Weaponry, 2014, 51(5):19-22(in Chinese).
[15] 张开敏, 邓瑞清. 舵机传动机构动力学建模与分析[J]. 航空兵器, 2012, 49(4):34-38. ZHANG K M, DENG R Q. Dynamical modeling and analysis of actuator transmission system[J]. Aero Weaponry, 2012, 49(4):34-38(in Chinese).
[16] GLASS D E. Ceramic Matrix Composite(CMC) Thermal Protection Systems(TPS) and hot structures for hypersonic vehicles:AIAA-2008-2682[R]. Reston, VA:AIAA, 2008.
[17] 朱言旦, 刘骁, 曾磊, 等. 大面积气动加热的石英灯阵模拟优化设计[J]. 航空学报, 2017, 38(9):121159. ZHU Y D, LIU X, ZENG L, et al. Optimization design of aerodynamic heating of large area simulated by quartz lamp array[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9):121159(in Chinese).
[18] 黄世勇, 王智勇. 热环境下的结构模态分析[J]. 导弹与航天运载技术, 2009, 25(5):50-56. HUANG S Y, WANG Z Y. The structure modal analysis with thermal environment[J]. Missile and Space Vehcile, 2009, 25(5):50-56(in Chinese).
[19] GUO Q T, ZHANG L M. Identification of the mechanical joint parameters with model uncertainty[J]. Chinese Journal of Aeronautics, 2005, 18(1):47-52.
[20] 董冠华, 殷勤, 刘蕴, 等. 基于模态分析理论的结合部动刚度辨识[J]. 振动与冲击, 2017, 36(20):125-131. DONG G H, YIN Q, LIU Y, et al. A study on the identification of joints dynamic stiffness based on modal analysis[J]. Journal of Vibration and Shock, 2017, 36(20):125-131(in Chinese).
[21] 《中国航空材料手册》编辑委员会. 中国航空材料手册, 第3卷:铝合金、镁合金[M]. 2版. 北京:中国标准出版社, 2002:76. Editorial Board of China Aeronautical Materials Handbook. China aeronautical materials handbook, volume 3:Aluminum alloy, magnesium alloy[M]. 2nd ed. Beijing:Standard Press of China, 2002:76(in Chinese).
[22] 《中国航空材料手册》编辑委员会. 中国航空材料手册, 第1卷:结构钢、不锈钢[M]. 2版. 北京:中国标准出版社, 2002:824. Editorial Board of China Aeronautical Materials Handbook. China aeronautical materials handbook, volume 1:Structural steel, stainless steel[M]. 2nd ed. Beijing:Standard Press of China, 2002:824(in Chinese).
[23] 肖乃风, 刘永清. 热振联合试验控制技术研究[J]. 强度与环境, 2012, 39(2):53-57. XIAO N F, LIU Y Q. Research of control technology in thermal-vibration test[J]. Structure & Environment Engineering, 2012, 39(2):52-57(in Chinese).
Outlines

/