Fluid Mechanics and Flight Mechanics

Progress of adjoint-based aerodynamic optimization design for large civil aircraft

  • BAI Junqiang ,
  • LEI Ruiwu ,
  • YANG Tihao ,
  • WANG Hui ,
  • HE Xiaolong ,
  • QIU Yasong
Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2018-09-03

  Revised date: 2018-09-26

  Online published: 2018-10-31

Supported by

National Program on Key Research Project of China (MJ-2015-F-010);Aeronautical Science Foundation of China (20161453011);National Natural Science Foundation of China (51806178)

Abstract

Large civil aircraft shows high cruise Mach number, complex interactive flow disturbance between components and difficult refined shape modification in the aerodynamic design. A huge workload is needed when the ‘cut and try’ technique is adopted in the aerodynamic design. The aerodynamic optimization method based on the high-fidelity simulation technique is able to solve this problem and gives valuable reference to the designers. This advantage makes the optimization technique based on high-fidelity simulation method become more significant in the aerodynamic design of civil aircraft. In this review, the key problems in the aerodynamic design of civil aircraft are summarized firstly. By comparing the gradient-based and gradient-free frameworks, we conclude that the gradient-based optimization design method is more suitable for the large-scale high-fidelity design optimization problems of the civil aircraft. Furthermore, the adjoint theory which used to solve the gradient is introduced in detail. Then, the developments of the aerodynamic shape optimization design method and multidisciplinary design optimization technology are analyzed. In the aspect of aerodynamic optimization of complex full configuration with multi-component and aircraft/engine integrated design are emphasized. Finally, the applications of adjoint method in the large civil aircraft are summarized and the future development trend of the large civil aircraft is also discussed.

Cite this article

BAI Junqiang , LEI Ruiwu , YANG Tihao , WANG Hui , HE Xiaolong , QIU Yasong . Progress of adjoint-based aerodynamic optimization design for large civil aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(1) : 522642 -522642 . DOI: 10.7527/S1000-6893.2018.22642

References

[1] REICHMUTH J, BERSTER P. Past and future developments of the global air traffic[M]//Biokerosene. Berlin, Heidelberg:Springer, 2018:13-31.
[2] LEE J J, LUKACHKO S P, WAITZ I A, et al. Historical and future trends in aircraft performance, cost, and emissions[J]. Annual Review of Energy and the Environment, 2001, 26(1):167-200.
[3] BIEGER T, WITTMER A. Air transport and tourism-Perspectives and challenges for destinations, airlines and governments[J]. Journal of Air Transport Management, 2006, 12(1):40-46.
[4] SCHMOLLGRUBER P, BARTOLI N, BEDOUET J, et al. Improvement of the aircraft design process for air traffic management evaluations[C]//2018 AIAA Aerospace Sciences Meeting. Reston, VA:AIAA, 2018.
[5] 朱自强, 吴宗成. 现代飞机设计空气动力学[M]. 北京:北京航空航天大学出版社, 2005. ZHU Z Q, WU Z C. Aerodynamics design of modern aircraft[M]. Beijing:Beihang University Press, 2005(in Chinese).
[6] WAGNER M, NORRIS G. Boeing 787 dreamliner[M]. New York:Zenith Press, 2009.
[7] MARSH G. Airbus takes on Boeing with reinforced plastic A350 XWB[J]. Reinforced Plastics, 2007, 51(11):26-29.
[8] PAUL O, HOWARD S. Review of evolving trends in blended wing body aircraft design[J]. Progress in Aerospace Sciences, 2016, 82:1-23.
[9] CAVALLARO R, DEMASI L. Challenges, ideas, and innovations of joined-wing configurations:A concept from the past, an opportunity for the future[J]. Progress in Aerospace Sciences, 2016, 87:1-93.
[10] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR-2014-218178[R]. Washington, D.C.:NASA Langley Research Center, 2014.
[11] SKINNER S N, ZARE B H. State-of-the-art in aerodynamic shape optimisation methods[J]. Applied Soft Computing, 2018, 62(3):373-391.
[12] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11):3197-3225. HAN Z H. Kriging surrogate model and its application to design optimization:A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese).
[13] 赵童, 张宇飞, 陈海昕, 等. 面向三维机翼性能的超临界翼型优化设计方法[J]. 中国科学, 2015, 45(10):89-101. ZHAO T, ZHANG Y F, CHEN H X, et al. Aerodynamic optimization method of supercritical airfoil geared to the performance of swept and tapered wing[J]. Scientia Sinica Technologica, 2015, 45(10):89-101(in Chinese).
[14] 黄江涛, 高正红, 白俊强, 等. 基于任意空间属性FFD技术的融合式翼稍小翼稳健型气动优化设计[J]. 航空学报, 2013, 34(1):37-45. HUANG J T, GAO Z H, BAI J Q, et al. Study of robust winglet design based on arbitrary space shape FFD technique[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1):37-45(in Chinese).
[15] PETER J E V, DWIGHT R P. Numerical sensitivity analysis for aerodynamic optimization:A survey of approaches[J]. Computers & Fluids, 2010, 39(3):373-391.
[16] NOCEDAL J, WRIGHT S. Numerical optimization[M]. New York:Springer, 2006.
[17] BARCLAY A. SQP methods for large-scale optimization[D]. San Diego, CA:University of California, 1999.
[18] BACHMANN S, BOTTMER C, SCHRÖDER J, et al. ADIC:An extensible automatic differentiation tool for ANSI-C[M]. New York:John Wiley & Sons, Inc., 1997.
[19] BISCHOF C, KHADEMI P, MAUER A, et al. Adifor 2.0:Automatic differentiation of Fortran 77 programs[J]. IEEE Computational Science & Engineering, 2002, 3(3):18-32.
[20] BENDTSEN C, STAUNING O. FADBAD:A flexible C++ package for automatic differentiation[R]. Lyngby:Technical University of Denmark, 1996.
[21] UTKE J, NAUMANN U, FAGAN M, et al. OpenAD/F:A modular open-source tool for automatic differentiation of fortran codes[J]. ACM Transactions on Mathematical Software, 2008, 34(4):1-36.
[22] HASCOЁT L. Tapenade:A tool for automatic differentiation of programs[C]//Proceedings of 4th European Congress on Computational Methods, 2004.
[23] GOLDFARB D, TOINT P L. Optimal estimation of Jacobian and Hessian matrices that arise in finite difference calculations[J]. Mathematics of Computation, 1984, 43(167):69-88.
[24] ZINGG D, LEUNG T, DIOSADY L, et al. Improvements to a Newton-Krylov adjoint algorithm for aerodynamic optimization[C]//17th AIAA Computational Fluid Dynamics Conference. Reston, VA:AIAA, 2005.
[25] BURDYSHAW C E, ANDERSON W K. A general and extensible unstructured mesh adjoint method[J]. Journal of Aerospace Computing, Information, and Communication, 2005, 2(10):401-413.
[26] GILES M B, DUTA M C, MUACUTE J D, et al. Algorithm developments for discrete adjoint methods[J]. AIAA Journal, 2003, 41(2):198-205.
[27] CORRAL R, GISBERT F. Non axisymmetric end-wall design using an adjoint Navier-Stokes solver[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences. Reston, VA:AIAA, 2005.
[28] KIM H J, KIM C, RHO O H, et al. Aerodynamic sensitivity analysis for Navier-Stokes equations[J]. Journal of the Korean Society for Industrial & Applied Mathematics, 1999, 3(2):161-171.
[29] LYU Z. High-fidelity aerodynamic design optimization of aircraft configurations[D]. Michigan:University of Michigan, 2014.
[30] LYU Z, KENWAY G K W, MARTINS J R R A. Aerodynamic shape optimization investigations of the common research model wing benchmark[J]. AIAA Journal, 2015, 53(4):968-985.
[31] CHERNUKHIN O, ZINGG D W. Multimodality and global optimization in aerodynamic design[J]. AIAA Journal, 2013, 51(6):1342-1354.
[32] YU Y, LYU Z, XU Z, et al. On the influence of optimization algorithm and initial design on wing aerodynamic shape optimization[J]. Aerospace Science and Technology, 2018, 75:183-199.
[33] BONS N, HE X, MADER C A, et al. Multimodality in aerodynamic wing design optimization[C]//35th AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2017.
[34] JAMESON A. Aerodynamic design via control theory[J]. Journal of Scientific Computing, 1988, 3(3):233-260.
[35] ELDIN I S, CARRIER G, MOUTON S. Discrete adjoint method in elsA (Part 2):Application to aerodynamic design optimisation[C]//Proceedings of the 7th ONERA-DLR Aerospace Symposium (ODAS), 2006.
[36] DUMONT A, LE PAPE A, PETER J, et al. Aerodynamic shape optimization of hovering rotors using a discrete adjoint of the Reynolds-averaged Navier-Stokes equations[J]. Journal of the American Helicopter Society, 2011, 56(3):1-11.
[37] MIALON B, FOL T, BONNAUD C. Aerodynamic optimization of subsonic flying wing configurations[C]//20th AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2002.
[38] CARRIER G, DESTARAC D, DUMONT A, et al. Gradient-based aerodynamic optimization with the elsA software:AIAA-2014-0568[R]. Reston, VA:AIAA, 2014.
[39] SCHWAMBORN D, GERHOLD T, HEINRICH R. The DLR TAU-code:Recent applications in research and industry[C]//ECCOMAS CFD 2006:Proceedings of the European Conference on Computational Fluid Dynamics, 2006.
[40] BREZILLON J, BRODERSEN O, DWIGHT R, et al. Development and application of a flexible and efficient environment for aerodynamic shape optimisation[C]//Proceedings of the ONERA-DLR Aerospace Symposium (ODAS), 2006.
[41] BREZILLON J, DWIGHT R P. Aerodynamic shape optimization using the discrete adjoint of the Navier-Stokes equations:Applications towards complex 3D configurations[C]//Proceedings of the CEAS/KATnet Conference on Key Aerodynamic Technologies, 2009.
[42] WIDHALM M, RONZHEIMER A, HEPPERLE M. Comparison between gradient-free and adjoint based aerodynamic optimization of a flying wing transport aircraft in the preliminary design[C]//AIAA 25th Applied Aerodynamics Conference. Reston, VA:AIAA, 2007.
[43] NIELSEN E J, ANDERSON W K. Recent improvements in aerodynamic design optimization on unstructured meshes[J]. AIAA Journal, 2002, 40(6):1155-1163.
[44] NIELSEN E J. Aerodynamic design sensitivities on an unstructured mesh using the Navier-Stokes equations and a discrete adjoint formulation[D]. Blacksburg, VA:Polytechnic Institute and State University, 1998.
[45] NIELSEN E J, DISKIN B, YAMALEEV N K. Discrete adjoint-based design optimization of unsteady turbulent flows on dynamic unstructured grids[J]. AIAA Journal, 2010, 48(6):1195-1206.
[46] PARK M A. Low boom configuration analysis with FUN3D adjoint simulation framework:AIAA-2011-3337[R]. Reston, VA:AIAA, 2011.
[47] PALACIOS F, COLONNO M R, ARANAKE A C, et al. Stanford University Unstructured (SU2):An open-source integrated computational environment for multi-physics simulation and design:AIAA-2013-0287[R]. Reston, VA:AIAA, 2013.
[48] PALACIOS F, ECONOMON T D, ARANAKE A C, et al. Stanford University Unstructured (SU2):Open-source analysis and design technology for turbulent flows:AIAA-2014-0243[R]. Reston, VA:AIAA, 2014.
[49] BUENO A, CASTRO C, PALACIOS F, et al. Continuous adjoint approach for the Spalart-Allmaras model in aerodynamic optimization[J]. AIAA Journal, 2012, 50(3):631-646.
[50] 杨旭东, 乔志德. 基于控制理论的气动优化设计技术研究[D]. 西安:西北工业大学, 2002. YANG X D, QIAO Z D. Aerodynamic optimization method research based on control theory[D]. Xi'an:Northwestern Polytechnical University, 2002(in Chinese).
[51] 熊俊涛, 乔志德, 杨旭东, 等. 基于黏性伴随方法的跨声速机翼气动优化设计[J]. 航空学报, 2007, 28(2):281-285. XIONG J T, QIAO Z D, YANG X D, et al. Optimum aerodynamic design of transonic wing based on viscous adjoint method[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(2):281-285(in Chinese).
[52] 杨旭东, 乔志德. 基于共轭方程法的跨声速机翼气动力优化设计[J]. 航空学报, 2003, 24(1):1-5. YANG X D, QIAO Z D. Optimum aerodynamic design of transonic wing based on adjoint equations method[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(1):1-5(in Chinese).
[53] 杨旭东, 乔志德, 朱兵. 基于控制理论和NS方程的气动设计方法研究[J]. 空气动力学学报, 2005, 23(1):46-52. YANG X D, QIAO Z D, ZHU B. Aerodynamic design method based on control theory and NS equations[J]. Acta Aerodynamica Sinica, 2005, 23(1):46-52(in Chinese).
[54] 左英桃, 高正红, 何俊. 基于NS方程和离散共轭方法的气动外形设计[J]. 空气动力学学报, 2010, 28(5):509-512. ZUO Y T, GAO Z H, HE J. Aerodynamic design method based on NS equations and discrete adjoint approach[J]. Acta Aerodynamica Sinica, 2010, 28(5):509-512(in Chinese).
[55] 左英桃, 傅林, 高正红, 等. 机翼-机身-短舱-挂架外形气动优化设计方法[J]. 航空动力学报, 2013, 28(9):2009-2015. ZUO Y T, FU L, GAO Z H. Aerodynamic optimization design of wing-body-nacelle-pylon configuration[J]. Journal of Aerospace Power, 2013, 28(9):2009-2015(in Chinese).
[56] 左英桃, 苏伟, 高正红, 等. 基于离散共轭方法的高超声速导弹气动外形优化设计[J]. 计算力学学报, 2012, 29(2):284-289. ZUO Y T, SU W, GAO Z H, et al. Aerodynamic configuration optimization design of hypersonic missile based on discrete adjoint method[J]. Chinese Journal of Computational Mechanics, 2012, 29(2):284-289(in Chinese).
[57] 唐智礼, 黄明恪. 基于控制理论的Euler方程翼型减阻优化设计[J]. 空气动力学学报, 2001, 19(3):262-270. TANG Z L, HUANG M K. Control theory based airfoil design using Euler equations[J]. Acta Aerodynamica Sinica, 2001, 19(3):262-270(in Chinese).
[58] 唐智礼. 应用控制理论的气动优化设计方法研究[D]. 南京:南京航空航天大学, 2000. TANG Z L. Aerodynamic optimization research using control theory[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2000(in Chinese).
[59] 徐兆可, 夏健, 高宜胜. 基于三维非结构网格的连续伴随优化方法[J]. 南京航空航天大学学报, 2015, 47(1):145-152. XU Z K, XIA J, GAO Y S. Continuous adjoint approach to aerodynamic optimization on 3D unstructured grids[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2015, 47(1):145-152(in Chinese).
[60] 杨洋, 欧阳绍修, 刘学强, 等. 基于伴随算子的跨声速机翼气动优化设计[J]. 南京航空航天大学学报, 2013, 45(3):347-352. YANG Y, OUYANG S X, LIU X Q, et al. Aerodynamic optimization of transonic wing using discrete adjoint operator[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2013, 45(3):347-352(in Chinese).
[61] 李彬, 邓有奇, 唐静, 等. 基于三维非结构混合网格的离散伴随优化方法[J]. 航空学报, 2014, 35(3):674-686. LI B, DENG Y Q, TANG J, et al. Discrete adjoint optimization method for 3D unstructured grid[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):674-686(in Chinese).
[62] 黄勇, 陈作斌, 刘刚. 基于伴随方程的翼型数值优化设计方法研究[J]. 空气动力学学报, 1999, 17(4):413-422. HUANG Y, CHEN Z B, LIU G. An investigation of aerodynamic optimization design for airfoil based on adjoint formulation[J]. Acta Aerodynamica Sinica, 1999, 17(4):413-422(in Chinese).
[63] 吴文华, 陶洋, 陈德华, 等. 基于伴随算子的气动布局优化技术及其在大飞机机翼减阻中的应用[J]. 航空动力学报, 2011, 26(7):1583-1589. WU W H, TAO Y, CHEN D H, et al. Wing optimization of large airplane by adjoint method[J]. Journal of Aerospace Power, 2011, 26(7):1583-1589(in Chinese).
[64] 吴文华, 范召林, 陈德华, 等. 基于伴随算子的大飞机气动布局精细优化设计[J]. 空气动力学学报, 2013, 30(6):719-724. WU W H, FAN Z L, CHEN D H, et al. Adjoint based on high precise aerodynamic shape optimization for transonic civil aircraft[J]. Acta Aerodynamica Sinica, 2013, 30(6):719-724(in Chinese).
[65] 黄江涛, 高正红, 余婧, 等. 大型民用飞机气动外形典型综合设计方法分析[J]. 航空学报, 2019, 40(2):122369. HUANG J T, GAO Z H, YU J. et al. The analysis of a typical integrated design method for large civil aircraft aero-dynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2):122369(in Chinese).
[66] 黄江涛, 刘刚, 周铸, 等. 基于离散伴随方程求解梯度信息的若干问题研究[J]. 空气动力学学报, 2017, 35(4):554-562. HUANG J T, LIU G, ZHOU Z, et al. Investigation of gra-dient computation based on discrete adjoint method[J]. Acta Aerodynamica Sinica, 2017, 35(4):554-562(in Chinese).
[67] 朱海涛, 白文. 基于非结构网格离散伴随方法的机翼多点多约束无粘优化设计[J]. 航空科学技术, 2016, 27(10):20-26. ZHU H T,BAI W. Discrete adjoint method on unstructured mesh for constrained multipoint wing design[J]. Aeronautical Science and Technology, 2016, 27(10):20-26(in Chinese).
[68] 刘峰博, 郝海兵, 李典, 等. 离散伴随方法在气动优化设计中的应用[J]. 航空计算技术, 2017, 47(2):33-36. LIU F B, HAO H B, LI D, et al. Application of discrete adjoint method in aerodynamic shape optimization design[J]. Aeronautical Computing Technique, 2017, 47(2):33-36(in Chinese).
[69] REUTHER J, JAMESON A. Supersonic wing and wing-body shape optimization using an adjoint formulation[M]. Washington, D.C.:NASA Ames Research Center, 1995.
[70] JAMESON A, FARMER J, MARTINELLI L, et al. Aerodynamic shape optimization of complex aircraft configurations via an adjoint formulation[M]. Washington, D.C.:NASA Ames Research Center, 1996.
[71] ANDERSON W K, VENKATAKRISHNAN V. Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation[J]. Computers & Fluids, 1999, 28(4):443-480.
[72] NIELSEN E J, ANDERSON W K. Aerodynamic design optimization on unstructured meshes using the Navier-Stokes equations[J]. AIAA Journal, 1999, 37(11):1411-1419.
[73] MAVRIPLIS D J. Discrete adjoint-based approach for optimization problems on three-dimensional unstructured meshes[J]. AIAA Journal, 2007, 45(4):741-750.
[74] MAVRIPLIS D J. Multigrid solution of the discrete adjoint for optimization problems on unstructured meshes[J]. AIAA Journal, 2006, 44(1):42-50.
[75] OSUSKY L, ZINGG D W. Application of an efficient Newton-Krylov algorithm for aerodynamic shape optimization based on the Reynolds-averaged Navier-Stokes equations[C]//21st AIAA Computational Fluid Dynamics Conference. Reston, VA:AIAA, 2013.
[76] TELIDETZKI K, OSUSKY L, ZINGG D W. Application of jetstream to a suite of aerodynamic shape optimization problems[C]//52nd AIAA Aerospace Sciences Meeting. Reston, VA:AIAA, 2014.
[77] KENWAY G K, MARTINS J. Aerodynamic shape optimization of the CRM configuration including buffet-onset conditions[C]//54th AIAA Aerospace Sciences Meeting. Reston, VA:AIAA, 2016.
[78] 陈颂, 白俊强, 史亚云, 等. 民用客机翼/机身/平尾构型气动外形优化设计方法研究[J]. 航空学报, 2015, 36(10):3195-3207. CHEN S, BAI J Q, SHI Y Y, et al. Aerodynamic shape optimization design of civil jet wing-body-tail configuration[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10):3195-3207(in Chinese).
[79] 李立, 白俊强, 郭同彪, 等. 考虑放宽静稳定度的民用客机气动优化设计[J]. 航空学报, 2017, 38(9):203-216. LI L, BAI J Q, GUO T B, et al. Aerodynamic optimization design for civil aircraft considering relaxed static stability[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9):203-216(in Chinese).
[80] BONS N, MADER C A, MARTINS J, et al. High-fidelity aerodynamic shape optimization of a full configuration regional jet[C]//AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2018.
[81] ALAN L M. A discrete Navier-Stokes adjoint method for aerodynamic optimisation of blended wing-body configurations[D]. Bedfordshire:Cranfield University, 2002.
[82] WONG W S, LE M A, QIN N. Parallel adjoint-based optimisation of a blended wing body aircraft with shock control bumps[J]. Aeronautical Journal, 2007, 111(1117):165-174.
[83] MÉHEUT M, CARRIER G. Aerodynamic optimization of a blended wing body using the adjoint method[C]//Evolutionary and Deterministic Methods for Design, Optimization and Control, 2011.
[84] REIST T A, ZINGG D W. Aerodynamic shape optimization of a blended-wing-body regional transport for a short range mission[C]//AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2013.
[85] LYU Z, MARTINS J R R A. Aerodynamic design optimization studies of a blended-wing-body aircraft[J]. Journal of Aircraft, 2014, 51(5):1604-1617.
[86] GAGNON H, ZINGG D W. Geometry generation of complex unconventional aircraft with application to high-fidelity aerodynamic shape optimization[C]//AIAA Computational Fluid Dynamics Conference. Reston, VA:AIAA, 2013.
[87] GAGNON H, ZINGG D W. High-fidelity aerodynamic shape optimization of unconventional aircraft through axial deformation[C]//Aerospace Sciences Meeting, 2014.
[88] IVALDI D, SECCO N R, CHEN S, et al. Aerodynamic shape optimization of a truss-braced-wing aircraft[C]//AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, VA:AIAA, 2015.
[89] SECCO N R, MARTINS J. RANS-based aerodynamic shape optimization of a strut-braced wing with overset meshes[C]//AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2018.
[90] LEE B J, LIOU M S, KIM C. Optimizing a boundary-layer-ingestion offset inlet by discrete adjoint approach[J]. AIAA Journal, 2010, 48(9):2008-2016.
[91] ORDAZ I, RALLABHANDI S K, NIELSEN E J, et al. Mitigation of engine inlet distortion through adjoint-based design[C]//35th AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2017.
[92] PIPERNI P, ABDO M, KAFYEKE F, et al. Preliminary aerostructural optimization of a large business jet[J]. Journal of Aircraft, 2007, 44(5):1422-1438.
[93] MARTINS J R R A, ALONSO J J, REUTHER J J. High-fidelity aerostructural design optimization of a supersonic business jet[J]. Journal of Aircraft, 2004, 41(3):523-530.
[94] POON N M K, MARTINS J R R A. An adaptive approach to constraint aggregation using adjoint sensitivity analysis[J]. Structural and Multidisciplinary Optimization, 2007, 34(1):61-73.
[95] FAZZOLARI A. An aero-structure adjoint formulation for efficient multidisciplinary wing optimization[D]. Braunschweig:Technical University of Braunschweig, 2005.
[96] MADER C, KENWAY G, MARTINS J. Toward high-fidelity aerostructural optimization using a coupled adjoint approach[C]//12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, VA:AIAA, 2008.
[97] KENNEDY G, MARTINS J. A comparison of metallic and composite aircraft wings using aerostructural design optimization[C]//12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, VA:AIAA, 2012.
[98] KENWAY G K W, KENNEDY G J, MARTINS J R R A. Scalable parallel approach for high-fidelity steady-state aeroelastic analysis and adjoint derivative computations[J]. AIAA Journal, 2014, 52(5):935-951.
[99] LIEM R P, KENWAY G K W, MARTINS J R R A. Multimission aircraft fuel-burn minimization via multipoint aerostructural optimization[J]. AIAA Journal, 2015, 53(1):104-122.
[100] BROOKS T R, KENNEDY G, MARTINS J. High-fidelity aerostructural optimization of a high aspect ratio tow-steered composite wing[C]//AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2017.
[101] BURDETTE D A. High-fidelity aerostructural design optimization of transport aircraft with continuous morphing trailing edge technology[D]. Michigan:University of Michigan, 2017.
[102] ZHANG J Z. Exploratory high-fidelity aerostructural optimization using an efficient monolithic solution method[D]. Toronto:University of Toronto, 2017.
[103] 杨体浩, 白俊强, 辛亮, 等. 考虑静气动弹性影响的客机机翼气动/结构一体化设计研究[J]. 空气动力学学报, 2017, 35(4):598-609. YANG T H, BAI J Q, XIN L, et al. Study on the aerodynamic/structural integration design of wing considering the influence of static aerodynamic elasticity[J]. Acta Aerodynamica Sinica, 2017, 35(4):598-609(in Chinese).
[104] LIEBECK R H. Design of the blended wing body subsonic transport[J]. Journal of Aircraft, 2004, 41(1):10-25.
[105] STANFORD B K, DUNNING P D. Optimal topology of aircraft rib and spar structures under aeroelastic loads[J]. Journal of Aircraft, 2015, 52(4):1298-1311.
[106] STANFORD B, WIESEMAN C D, JUTTE C. Aeroelastic tailoring of transport wings including transonic flutter constraints[C]//56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2015.
[107] JONSSON E, KENWAY G K, KENNEDY G, et al. Development of flutter vonstraints for high-fidelity aerostructural optimization[C]//35th AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2017.
[108] ZHANG Z, CHEN P C, YANG S, et al. Unsteady aerostructure coupled adjoint method for flutter suppression[J]. AIAA Journal, 2015, 53(8):2121-2129.
[109] CHOI S, LEE K, POTSDAM M M, et al. Helicopter rotor design using a time-spectral and adjoint-based method[J]. Journal of Aircraft, 2014, 51(2):412-423.
[110] MISHRA A, MAVRIPLIS D, SITARAMAN J. Time-dependent aeroelastic adjoint-based aerodynamic shape optimization of helicopter rotors in forward flight[J]. AIAA Journal, 2016, 54(12):3813-3827.
[111] IM D K, CHOI S, MCCLURE J E, et al. Mapped Chebyshev pseudospectral method for unsteady flow analysis[J]. AIAA Journal, 2015, 53(12):3805-3820.
[112] 杨体浩, 白俊强, 史亚云, 等. 适用于非周期流固耦合问题的时间谱方法[J]. 航空学报, 2018, 39(5):121654. YANG T H, BAI J Q, SHI Y Y, et al. Time spectral method for non-periodic fluid-structure coupling problems[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):121654(in Chinese).
Outlines

/