Based on the Reynolds-Averaged Navier-Stokes(RANS) equations and the structured grid (point to point) technology, the effects of support system on the aerodynamic characteristics of CRM Wing/Body/Pylon/Nacelle (CRM-WBPN) configuration are studied by using TRIP 3.0 (Trisonic Platform version 3.0). A grid family, which includes a tiny, coarse, medium, and fine grid, is constructed, and grid convergence study is presented. The effect of support system on the drag increment between CRM-WBPN and CRM-WB model is discussed on lift coefficient 0.50. The influence of support system on the aerodynamic characteristics of CRM-WBPN is provided at different angles of attack. Compared with the experimental data from the NASA Langley National Transonic Facility (NTF) and the numerical results of the CRM-WB model, the present numerical results show that the support system has mild effect on the drag increment between WBPN and WB. The inclusion of support system into the computation model decreases the lift coefficient and drag coefficient, and increases the pitching moment coefficient. The numerical results of WBPNS model more closely match with the experimental results.
MENG Dehong
,
LI Wei
,
WANG Yuntao
,
SUN Yan
. Numerical simulation of CRM-WBPN wind tunnel test model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019
, 40(2)
: 522402
-522402
.
DOI: 10.7527/S1000-6893.2018.22402
[1] LEVY D W, VASSBERG J C, WAHLS R A, et al. Summary of data from the first AIAA CFD drag prediction workshop[J]. Journal of Aircraft, 2003, 40(5):875-882.
[2] LAFLIN K R, VASSBERG J C, WAHLS R A, et al. Summary of data from the second AIAA CFD drag prediction workshop[J]. Journal of Aircraft, 2005, 42(5):1165-1178.
[3] VASSBERG J C, TINOCO E N, MANI M, et al. Abridged summary of the third AIAA CFD drag prediction workshop[J]. Journal of Aircraft, 2008, 45(3):781-798.
[4] VASSBERG J C, TINOCO E N, MANI M, et al. Summary of the fourth AIAA computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2014, 51(4):1070-1089.
[5] LEVY D W, LAFLIN K R, TINOCO E N, et al. Summary of data from the fifth computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2014, 51(4):1194-1213.
[6] TINOCO E N, BRODERSEN O P, KEYE S, et al. Summary data from the sixth AIAA CFD drag prediction workshop:CRM cases[J]. Journal of Aircraft, 2017(4):1-28.
[7] 王运涛. DPWⅣ~DPWⅣ数值模拟技术综述[J]. 航空学报, 2018, 39(4):021836. WANG Y T. An overview of DPWⅣ-DPWⅣ numerical simulation technology[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4):021836(in Chinese).
[8] VASSBERG J C, DEHAAN M A, RIVERS S M, et al. Development of a common research model for applied CFD validation studies:AIAA-2008-6919[R]. Reston, VA:AIAA, 2008.
[9] RIVERS M B, DITTBEMER A. Experimental investigation of the NASA common research model:AIAA-2010-4218[R]. Reston, VA:AIAA, 2010.
[10] RIVERS M B, DITTBEMER A. Experimental investigation of the NASA common research model in the NASA Langley transonic facility and NASA Ames 11-ft transonic wind tunnel:AIAA-2011-1126[R]. Reston, VA:AIAA, 2011
[11] RIVERS M B, HUNTER C A. Support system effects on the NASA common research model:AIAA-2012-0707[R]. Reston, VA:AIAA, 2012.
[12] RIVERS M B, HUNTER C A, CAMPBELL R L. Further investigation of the support system effects and wing twist on the NASA common research model:AIAA-2012-3209[R]. Reston, VA:AIAA, 2012.
[13] DAVID H U E. CFD investigation on the DPW-5 configuration with measured experimental wing twist using the elsA slover and the far-field approach:AIAA-2013-2508[R]. Reston, VA:AIAA, 2013.
[14] KEYE S, BRODERSEN O, RIVERS M B, et al. Investigation of aeroelastic effects on the NASA common research model[J]. Journal of Aircraft, 2014, 51(4):1323-1330.
[15] 王运涛, 孙岩, 孟德虹, 等. 包含支撑装置和机翼变形的CRM-WB构型气动特性数值模拟[J]. 航空学报, 2017, 38(10):121202. WANG Y T, SUN Y, MENG D H, et al. Numerical simulation of aerodynamic characteristics of CRM-WB configuration with support system and wing deformation[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):121202(in Chinese).
[16] 王运涛, 孙岩, 孟德虹, 等. CRM翼身组合体模型高阶精度数值模拟[J]. 航空学报, 2017, 38(3):120298. WANG Y T, SUN Y, MENG D H, et al. High-order numerical simulation of CRM wing-body model[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):120298(in Chinese).
[17] 孟德虹, 孙岩, 王运涛, 等. CRM-WB构型风洞试验模型数值模拟[C]//第十七届全国计算流体力学会议论文集, 2017. MENG D H, SUN Y, WANG Y T, et al. Numerical simulation of CRM-WB wind tunnel model[C]//17th National Conference for Computational Fluid Dynamics, 2017(in Chinese).
[18] 王运涛, 王光学, 张玉伦. DPW Ⅲ机翼和翼身组合体构型数值模拟[J]. 空气动力学学报, 2011, 29(3):264-269. WANG Y T, WANG G X, ZHANG Y L. Numerical simulation of DPW Ⅲ wing and wing-body configurations[J]. Acta Aerodynamica Sinica, 2011, 29(3):264-269(in Chinese).
[19] 王运涛, 张书俊, 孟德虹. DPW4翼/身/平尾组合体的数值模拟[J]. 空气动力学学报, 2013, 31(6):739-744. WANG Y T, ZHANG S J, MENG D H. Numerical simulation and study for DPW4 wing/body/tail[J]. Acta Aerodynamica Sinica, 2013, 31(6):739-744(in Chinese).
[20] VAN LEER B. Towards the ultimate conservation differences scheme Ⅱ, monoticity and conservation combined in a second order scheme[J]. Journal of Computational Physics, 1974, 14:361-370.
[21] MENTER F R. Two equation eddy viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8):1598-1605.
[22] YOON S, JAMESON A. Lower-upper symmetric Gauss-Sediel method for the Euler and Navier-Stokes equation[J]. AIAA Journal, 1988, 26(9):1025-1026.