In conceptual design of the strut-braced wing airliner, the quantitative relations between primary parameters and the structure weight is established to achieve the requirements on structure weight evaluation. This paper proposes a two-level optimization approach for structure conceptual design and weight analysis of strut-braced wing. Based on the finite element method used in the beam modeling, an analysis model for strut-braced wing structure is established, considering strength and flutter as constraints. Based on the full potential equation with boundary layer correction, an aerodynamic load model is established. An civil aircraft with strut-braced wing is investigated as an example to verify the approach. The results indicate that this approach could analyze the effect of primary parameters on the structure weight, and obtain quantitative descriptions, providing technical support and reference data for conceptual design of strut-braced airliner.
ZHANG Xintan
,
ZHANG Shuai
,
WANG Jianli
,
ZHOU Bin
. Effect of primary parameters on structure weight of civil aircraft with strut-braced wing[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019
, 40(2)
: 522359
-522359
.
DOI: 10.7527/S1000-6893.2018.22359
[1] BROWN N. Next generation transport concepts and enabling technology research at NASA:NASA-20140011013[R]. Edwards:NASA Dryden Flight Research Center, 2014.
[2] 张帅, 夏明, 钟伯文. 民用飞机气动布局发展演变及其技术影响因素[J]. 航空学报, 2016, 37(1):30-44. ZHANG S, XIA M, ZHONG B W. Evolution and technical factors influencing civil aircraft aerodynamic configuration[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):30-44(in Chinese).
[3] GUR O, BHATIA M, SCHETZ J A, et al. Design optimization of a truss-braced wing aircraft[C]//9th AIAA Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2009.
[4] BRADLEY M K, DRONEY C K. Subsonic ultra green aircraft research:Phase I final report:NASA/CR-2011-216847[R]. Washington, D.C.:NASA, 2011.
[5] NAM T, CHAKRABORTY I, GROSS J, et al. Multidisciplinary design optimization of a truss braced wing concept[C]//14th AIAA Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2014.
[6] ZHANG K S, JI P B, BAKAR A, et al. Multidisciplinary evaluation of truss-braced wing for future green aircraft[C]//28th International Congress of the Aeronautical Sciences, 2012:1-8.
[7] GERN F, KO A, GROSSMAN B, et al. Transport weight reduction through MDO:The strut-braced wing transonic transport[C]//35th AIAA Fluid Dynamics Conference and Exhibit. Reston, VA:AIAA, 2005.
[8] 朱自强, 王晓璐, 吴宗成, 等. 支撑机翼跨声速民机的多学科优化设计[J]. 航空学报, 2009, 30(1):1-11. ZHU Z Q, WANG X L, WU Z C, et al. Multi-disciplinary optimization of strut-braced wing transonic transport[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(1):1-11(in Chinese).
[9] 余雄庆, 欧阳星, 邢宇, 等. 机翼结构重量预测的多学科分析优化方法[J]. 航空学报, 2016, 37(1):235-243. YU X Q, OUYANG X, XING Y, et al. Weight prediction method of wing-structure using multidisciplinary analysis and optimization[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):235-243(in Chinese).
[10] BHATIA M, KAPANIA R K, HOEK M V, et al. Structural design of a truss braced wing-Potential and challenges[C]//50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2009.
[11] GERN F H, NAGHSHINEH-POUR A H, SULAEMAN E, et al. Structural wing sizing for multidisciplinary design optimization of a strut-braced wing[J]. Journal of Aircraft, 2001, 38(1):154-163.
[12] MALLIK W, KAPANIA R K, SCHETZ J A. Multidisciplinary design optimization of medium-range transonic truss-braced wing aircraft with flutter constraint[C]//54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2013.
[13] MALLIK W, KAPANIA R K, SCHETZ J A. Effect of flutter on the multidisciplinary design optimization of truss-braced wing aircraft[J]. Journal of Aircraft, 2015, 52(6):1-15.
[14] KULFAN B M, BUSSOLETTI J E. Fundamental parametric geometry representations for aircraft component shapes[C]//11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, VA:AIAA, 2006.
[15] 雷莉, 韩庆, 钟小平. 翼面结构结点载荷转换分配方法的比较分析[J]. 航空工程进展, 2014, 5(3):383-389. LEI L, HAN Q, ZHONG X P.comparative analysis of conversion distribution methods for wing structural node loads[J]. Advances in Aeronautical Science and Engineering, 2014, 5(3):383-389(in Chinese).
[16] BOOKSTEIN F L. Principal warps:Thin plate splines and the decomposition of deformations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(6):567-585.
[17] TORENBEEK E. Advanced aircraft design[M]. Chichester:John Wiley & Sons Ltd., 2013:229-257.
[18] HASSIG H J. An approximate true damping solution of the flutter equation by determinant iteration[J]. Journal of Aircraft, 1971, 8(11):885-889.
[19] Theoretical background for optimus[EB/OL]. Gaston, Geenslaan:Noesis Solutions, 2016:101-104.
[20] 邢宇, 余雄庆. 桁架支撑机翼布局客机的机翼质量计算[J]. 机械设计与制造工程, 2018, 47(2):83-86. XING Y, YU X Q. The wing mass estimation for commercial aircraft with truss-braced wing configuration[J]. Machine Design and Manufacturing Engineering, 2018, 47(2):83-86(in Chinese).
[21] NAGHSHINEH-POUR A H. Structural optimization and design of a strut-braced wing aircraft[D]. Blacksburg, VA:Virginia Polytechnic Institute and State University, 1998:14-20.
[22] GRASMEYER J M. Multidisciplinary design optimization of a strut-braced wing aircraft[D]. Blacksburg, VA:Virginia Polytechnic Institute and State University, 1998.
[23] 肖志鹏, 赵群, 徐吉峰. 考虑气动弹性约束的复合材料支撑机翼优化设计[J]. 复合材料学报, 2014, 31(1):194-199. XIAO Z P, ZHAO Q, XU J F. Optimization design of composite strut-braced wings with aeroelastic constraint[J]. Acta Materiae Compositae Sinica, 2014, 31(1):194-199(in Chinese).