[1] ZHANG Y F, FANG X M, CHEN H X, et al. Supercritical natural laminar flow airfoil optimization for regional aircraft wing design[J]. Aerospace Science and Technology, 2015, 43:152-164.
[2] HAN Z H, CHEN J, ZHU Z, et al. Areodynamic design of transonic nature-laminar-flow(NLF) wing via surrogate-based optimization:AIAA-2016-2041[R]. Reston, VA:AIAA, 2016.
[3] 邢宇, 罗东明, 余雄庆. 超临界层流翼型优化设计策略[J]. 北京航空航天大学学报, 2017, 43(8):1616-1623. XING Y, LUO D M, YU X Q. Optimization strategy of supercritical laminar flow airfoil design[J]. Journal of Beijing University of Aeronautics & Astronautics, 2017, 43(8):1616-1623(in Chinese).
[4] 朱自强, 吴宗成, 丁举春. 层流流动控制技术及应用[J]. 航空学报, 2011, 32(5):765-784. ZHU Z Q, WU Z C, DING J C. Laminar flow control technology and application[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):765-784(in Chinese).
[5] SCHRUF G. Status and perspective of laminar flow[J]. The Aeronautical Journal, 2005, 109(1102):639-644.
[6] THIBERT J, RENEAUX J, SCHMITT R. ONERA activities on drag reduction[J]. Journal of Aircraft, 2004, 41(1):10-25.
[7] 马洪强, 温昊驹. 高超声速摩擦阻力直接测量实验研究[J]. 实验流体力学, 2016, 30(3):85-91. MA H Q, WEN H J. Direct measurement of skin friction in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3):85-91(in Chinese).
[8] LIU T. Extraction of skin-friction fields from surface flow visualizations as an inverse problem[J]. Measurement Science & Technology, 2015, 24(1):124004.
[9] 王鹏, 赵荣奂, 衷洪杰, 等. 三维荧光油流技术的试验研究[J]. 空气动力学学报, 2017, 35(1):146-150. WANG P, ZHAO R H, ZHONG H J, et al. Experimental investigations of 3D luminescent oil flow techniques[J]. Acta Aerodynamica Sinica, 2017, 35(1):146-150(in Chinese).
[10] NAUGHTON J W, HIND M D. Multi-image oil-film interferometry skin friction measurements[J]. Measurement Science & Technology, 2013, 24(12):4003.
[11] 黄湛, 王宏伟, 魏连风, 等. 基于荧光油膜的全局表面摩阻测量技术研究[J]. 空气动力学学报, 2016, 34(3):373-378. HUANG Z, WANG H W, WEI L F, et al. Research of global skin friction measurement based on fluorescent oil film[J]. Acta Aerodynamica Sinica, 2016, 34(3):373-378(in Chinese).
[12] 马洪强, 高贺, 毕志献. 高超声速飞行器相关的摩擦阻力直接测量技术[J]. 实验流体力学, 2011, 25(4):83-88. MA H Q, GAO H, BI Z X. Direct measurement of skin friction for hypersonic flight vehicle[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4):83-88(in Chinese).
[13] ESTEBAN L B, DOGAN E, RODRÍGUEZ-LÓPEZ E, et al. Skin-friction measurements in a turbulent boundary layer under the influence of free-stream turbulence[J]. Experiments in Fluids, 2017, 58(9):1-7.
[14] LIU T, MONTEFORT J, WOODIGA S, et al. Global luminescent oil-film skin friction meter[J]. AIAA Journal, 2008, 46(2):476-485.
[15] 陈星, 毕志献, 宫建, 等. 基于剪敏液晶涂层的光学摩阻测量技术研究[J]. 实验流体力学, 2012, 26(6):70-74. CHEN X, BI Z X, GONG J, et al. Optical skin friction measurement using shear-sensitive liquid-crystal coatings[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(6):70-74(in Chinese).
[16] GAUDET L, GEL T G. Use of liquid crystals for qualitative and quantitative 2-D studies of transition and skin-friction[C]//13th International Congress on Instrumentation in Aerospace Simulation Facilities, 1989.
[17] 耿子海, 史志伟, 金启刚. 油膜干涉测量翼型壁面摩阻低速风洞试验技术[J]. 空气动力学学报, 2016, 34(1):80-85. GENG Z H, SHI Z W, JIN Q G. Invetigation of skin-friction measurements using oil-film interferometry on airfoil wall in low speed wind tunnel[J]. Acta Aerodynamica Sinica, 2016, 34(1):80-85(in Chinese).
[18] SCHVLEIN E. Optical method for skin-friction measurements on fast-rotating blades[J]. Experiments in Fluids, 2014, 55(2):1-10.
[19] 代成果, 张长丰, 黄飓, 等. 高超声速表面摩擦应用油膜干涉测量技术研究[J]. 实验流体力学, 2012, 26(2):68-71. DAI C G, ZHANG C F, HUANG J, et al. Hypersonic skin friction stress measurements using oil film interferometry technique[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2):68-71(in Chinese).
[20] LIU T, WOODIGA S. Global skin-friction diagnostics based on surface mass-transfer visualizations[J]. AIAA Journal, 2014, 52(11):2369-2383.
[21] RYAN J M, JOSEPH A, ERIC C. Direct skin friction measurements at mach 10 in a hypervelocity wind tunnel[J]. Journal of Spacecraft and Rockets, 2017, 54(4):871-882.
[22] FONOV S, JONES G, CRAFTON J, et al. The development of optical techniques for the measurement of pressure and skin friction[J]. Measurement Science & Technology, 2006, 16(6):1-8.
[23] CRAFTON J, FONOV S, JONES E, et al. Optical measurements of pressure and shear in a plasma[C]//AIAA Fluid Dynamics Conference and Exhibit. Reston, VA:AIAA, 2013.
[24] LIU T S, SULIVAN J P. Luminescent oil-film skin friction meter[J]. AIAA Journal, 1998, 36(8):1460-1465.
[25] HUSEN N, ROOZEBOOM N, LIU T. Global skin-friction measurements using particle image surface flow visualization and a luminescent oil-film[C]//AIAA Science and Technology Forum and Exposition. Reston, VA:AIAA, 2015.
[26] ZHONG H J, WOODIGA S, WANG P, et al. Skin-friction topology of wing-body junction flows[J]. European Journal of Mechanics - B/Fluids, 2015, 53:56-67.
[27] 李鹏, 明晓. 风力机叶片的全局表面摩擦力测量的荧光油膜法[J]. 南京航空航天大学学报, 2011, 42(5):581-585. LI P, MING X. Fluorescence oil film method for global skin friction measurement of wind turbine blade[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(5):581-585(in Chinese).
[28] KEISUKE H, YOSHIYUKI T, LIU T S, et al. Optical-flow-based background-oriented schlieren technique for measuring a laser-induced underwater shock wave[J]. Experiments in Fluids, 2016, 57(179):178-189.
[29] LIU T S, MISAKA T, ASAIi K, et al. Feasibility of skin-friction diagnostics based on surface pressure gradient field[J]. Measurement Science and Technology, 2016, 27(12):5304-5320.
[30] 李鹏. 全局表面摩擦应力直接测量技术研究[D]. 南京:南京航空航天大学, 2012. LI P. Studies of direct measurement techniques about global skin friction[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
[31] 张征宇, 黄叙辉, 尹疆, 等. 风洞试验中的视频测量技术现状与应用综述[J]. 空气动力学学报, 2016, 34(1):70-79. ZHANG Z Y, HUANG X H, YIN J, et al. Research status and application of videogrammetric measurement techniques for wind tunnel testing[J]. Acta Aerodynamica Sinica, 2016, 34(1):70-79(in Chinese).
[32] 孙岩, 张征宇, 黄诗捷, 等. 风洞试验中模型迎角视觉测量技术研究[J]. 航空学报, 2013, 34(1):1-7. SUN Y, ZHANG Z Y, HUANG S J, et al. Vision measurement technology research for model angle of attack in wind tunnel tests[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1):1-7(in Chinese).
[33] LIU T, BURNER A W, JONES T W, et al. Photogrammetric techniques for aerospace applications[J]. Progress in Aerospace Sciences, 2012, 54(10):1-58.
[34] MARTINEZ B, BIDINO D, BASTIDE M, et, al. Motion measurement of a wind tunnel model by stereovision technique:AIAA-2015-2405[R]. Reston, VA:AIAA, 2015.
[35] 张征宇, 朱龙, 黄叙辉, 等. 基于前方交会的5点相对定向[J]. 光学学报, 2015, 35(1):231-238. ZHANG Z Y, ZHU L, HUANG X H, et al. Five-point relative orientation based on forward intersection[J]. Acta Optica Sinica, 2015, 35(1):231-238(in Chinese).
[36] 张征宇, 王显圣, 黄叙辉, 等. 高速复杂流动结构的视频测量[J]. 航空学报, 2017, 38(8):18-27. ZHANG Z Y, WANG X S, HUANG X H, et al. Videogrammetry measurement for high-speed complex flow structures[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(8):18-27(in Chinese).
[37] 周方奇, 杨党国, 王显圣, 等. 前缘直板扰流对高速空腔的降噪效果分析[J]. 航空学报, 2018, 39(4):121812. ZHOU F Q, YANG D G, WANG X S, et al. Effect of leading edge plate on high speed cavity noise control[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4):121812(in Chinese).