Solid Mechanics and Vehicle Conceptual Design

Finite element model of beem considering arbitrary deformation mode of cross-section

  • HE Huan ,
  • SONG Dapeng ,
  • ZHANG Chenkai ,
  • CHEN Guoping
Expand
  • 1. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Institute of Vibration Engineering Research, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2018-04-19

  Revised date: 2018-08-09

  Online published: 2018-10-10

Supported by

National Natural Science Foundation of China (11472132); the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Nanjing University of Aeronautics and Astronautics) (MCMS-I-0118G01); the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions

Abstract

A cross-section interpolation beam model considering the complete deformation of the cross-section is proposed and used to model and analyze the wing structure. First, the Lagrange functions are introduced as the interpolation function to describe the shape of the beam cross-section, and the displacement vectors are used as unknown variables to describe the displacement of the cross-section. On this basis, the displacement field of the beam element is constructed according to the interpolation theory. While the displacements of the beam in the conventional beam element are determined by the deflection and rotation of the assumed neutral axis, the new beam element rejects the neutral axis hypothesis and flat section hypothesis, and the deformation of the beam cross-section is obtained by the interpolation functions. Then based on the finite element theory, the stiffness matrix and the mass matrix of the beam element are derived. Finally, the wing components are modeled by the cross-section interpolation beam element, and the static analysis and dynamic analysis under typical conditions are carried out. The validity of the beam model is verified by comparing the result with the results of Nastran solid model, showing that the model provides a one-dimensional beam simplified modeling method for the structural design and strength analysis of the wing.

Cite this article

HE Huan , SONG Dapeng , ZHANG Chenkai , CHEN Guoping . Finite element model of beem considering arbitrary deformation mode of cross-section[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(12) : 222228 -222228 . DOI: 10.7527/S1000-6893.2018.22228

References

[1] 姚卫星, 顾怡. 飞机结构设计[M]. 北京:国防工业出版社, 2016:46-47. YAO W X, GU Y. Aircraft structure design[M]. Beijing:National Defend Industry Press, 2016:46-47(in Chinese).
[2] 蒋余芬, 朱纪洪, 刘世前. 弹性机翼动力学建模与仿真[J]. 系统仿真学报, 2006, 18(z2):5-7. JIANG Y F, ZHU J H, LIU S Q. Elastic wing dynamics modeling and simulation[J]. Journal of System Simulation, 2006, 18(z2):5-7(in Chinese).
[3] 欧阳星, 余雄庆, 王宇. 采用等效刚度有限元模型的复合材料机翼颤振分析[J]. 振动工程学报, 2015, 28(3):404-410. OUYANG X, YU X Q, WANG Y. Flutter analysis of composite wing based on equivalent stiffness finite element model[J]. Journal of Vibration Engineering, 2015, 28(3):404-410(in Chinese).
[4] WRIGHT J R, COOPERJ E. Introduction to aircraft aeroelasticity and loads[M]. Hoboken, NJ:John Wiley & Sons, Ltd., 2007.
[5] ZHAO Y H, HU H Y. Structural modeling and aeroelastic analysis of high-aspect-ratio composite wings[J]. Chinese Journal of Aeronautics, 2005, 18(1):25-30.
[6] 张旭, 吴志刚, 杨超. 基于等效梁模型的长直机翼动力学与颤振分析[J]. 北京航空航天大学学报, 2010, 36(11):1373-1377. ZHANG X, WU Z G, YANG C. Dynamic and flutter analysis of long straight wing based on equivalent beam model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(11):1373-1377(in Chinese).
[7] LIVNE E, NAVARRO I. Nonlinear equivalent plate modeling of wing-box structures[J]. Journal of Aircraft, 2012, 36(5):851-865.
[8] GILES G L. Equivalent plate analysis of aircraft wing box structures with general planform geometry[J]. Journal of Aircraft, 1986, 23(11):859-864.
[9] KRISHNAMURTHY T, TSAI F J. Static and dynamic structural response of an aircraft wing with damage using equivalent plate analysis[C]//49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2008.
[10] 王宇, 欧阳星, 余雄庆. 采用等效有限元模型的复合材料机翼结构优化[J]. 复合材料学报, 2015, 32(5):1487-1495. WANG Y, OUYANG X, YU X Q. Structural optimization of composite wing using equivalent finite element model[J]. Acta Materiae Compositae Sinica, 2015, 32(5):1487-1495(in Chinese).
[11] 周倩南. 基于位移变形理论的空间梁模型分析与研究[D]. 杭州:浙江大学, 2015:1-2. ZHOU Q N. Spatial beam model analysis and research based on displacement deformation theory[D]. Hangzhou:Zhejiang University, 2015:1-2(in Chinese).
[12] TIMOSHENKO S P. LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars[J]. Philosophical Magazine, 1950, 7(245):239-250.
[13] 胡海昌. 弹性力学的变分原理及其应用[M]. 北京:科学出版社, 1981:139-144. HU H C. Variational principle of elastic mechanics and its application[M]. Beijing:Science Press, 1981:139-144(in Chinese).
[14] HUGHES T J R, TAYLOR R L, KANOKNUKULCHAI W. A simple and efficient finite element for plate bending[J]. International Journal for Numerical Methods in Engineering, 2010, 11(10):1529-1543.
[15] ORAL S. Anisoparametric interpolation in hybrid-stress timoshenko beam element[J]. Journal of Structural Engineering, 1991, 117(4):1070-1078.
[16] OWEN D R J, HINTON E. Finite elements in plasticity:Theory and practice[M]. Swansea:Pineridge Press, 1980.
[17] 王勖成. 有限单元法[M]. 北京:清华大学出版社, 2003:111-113. WANG X C. Finite element method[M]. Beijing:Tsinghua University Press, 2003:111-113(in Chinese).
[18] BATHEK J. Finite element procedures in engineering analysis[M]. Englewood Cliffs, NJ:Prentice-Hall, Inc., 1982.
[19] OÑATE E. Structural analysis with the finite element method[M]. Netherlands:Springer, 2009.
[20] 陈桂彬. 气动弹性设计基础[M]. 北京:北京航空航天大学出版社, 2010:114-128. CHEN G B. Aeroelastic design basis[M]. Beijing:Beihang University Press, 2010:114-128(in Chinese).
[21] 赵永辉. 气动弹性力学与控制[M]. 北京:科学出版社, 2007:130-139. ZHAO Y H. Aeroelasticity mechanics and control[M]. Beijing:Science Press, 2007:130-139(in Chinese).
Outlines

/