Material Engineering and Mechanical Manufacturing

Interlaminar bonding strength for thermoplastic composite in an in-situ consolidation process

  • SONG Qinghua ,
  • LIU Weiping ,
  • LIU Xiaolin ,
  • LIU Kui ,
  • YANG Yang ,
  • CHEN Jiping
Expand
  • Shanghai Aircraft Manufacturing Co., Ltd., Shanghai 201324, China

Received date: 2018-07-13

  Revised date: 2019-08-06

  Online published: 2018-09-25

Supported by

Creative Foundation of Shanghai Aircraft Manufacturing Co., Ltd (F-CXKT-0155); Natural Science Foundation of Shanghai (17ZR14118001)

Abstract

The Automated Fiber Placement (AFP) of the continuous fiber reinforced thermoplastic composite could realize the in-situ consolidation and the in-situ consolidated laminate without being reconsolidated by the autoclave, belonging to a non-autoclave technology. The strength of the laminate made by in-situ consolidation is directly determined by the interlaminard bonding strength. The interlaminar intimate contact model and the molecular chain diffusion model are presented for predicting the relation between the interlaminar bonding strength and processing parameters, optimizing the in-situ consolidated processing parameters. Experiments were carried out to validate these results computed by the interlaminar intimate contact model and the molecular chain diffusion model. The experimental results are similar to the predicted results. When the pressure of roller reaches 1500 N, the degree of the interlaminar intimate could reach 1. The diffusion time of the molecular chain could be shortened by increasing the heating rate. The InterLaminar Shear Strength (ILSS) of the in-situ consolidated laminate is only about 70% of that consolidated by autoclave; therefore, it is necessary to analyze the other factors that influence the strength of the in-situ consolidated laminate.

Cite this article

SONG Qinghua , LIU Weiping , LIU Xiaolin , LIU Kui , YANG Yang , CHEN Jiping . Interlaminar bonding strength for thermoplastic composite in an in-situ consolidation process[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(4) : 422543 -422543 . DOI: 10.7527/S1000-6893.2018.22543

References

[1] 宋清华, 肖军, 文立伟, 等. 热塑性复合材料自动纤维铺放装备技术[J]. 复合材料学报, 2016, 33(6):1214-1222. SONG Q H, XIAO J, WEN L W, et al. Automated fiber placement system technology for thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2016, 33(6):1214-1222(in Chinese).
[2] 富宏亚, 李玥华. 热塑性复合材料纤维铺放技术研究进展[J]. 航空制造技术, 2012(18):44-48. FU H Y, LI Y H. Research on thermoplastic composites fiber placement technology[J]. Aeronautical Manufacturing Technology, 2012(18):44-48(in Chinese).
[3] 王玉琦. 碳纤维织物/聚苯硫醚复合材料工艺研究[J]. 航空学报, 1993, 14(4):214-218. WANG Y Q. A study on carbon fabric/PPS composites[J]. Acta Aeronautica et Astronautica Sinica, 1993, 14(4):214-218(in Chinese).
[4] 文立伟, 宋清华, 秦丽华, 等. 基于机器视觉与UMAC的自动铺丝成型构件缺陷检测闭环控制系统[J]. 航空学报, 2015, 36(12):3991-4000. WEN L W, SONG Q H, QIN L H, et al. Defect detection and closed-loop control system for automated fiber placement forming components based on machine vision and UMAC[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12):3991-4000(in Chinese).
[5] 张婷. 高性能热塑性复合材料在大型客机结构件上的应用[J]. 航空制造技术, 2013(15):32-35. ZHANG T. Applications of high performance thermoplastic composites for commercial airplane structural component[J]. Aeronautical Manufacturing Technology, 2013(15):32-35(in Chinese).
[6] CHENG Q F, FANG Z P, XU Y H, et al. Morphological and spatial effects on toughness and impact damage resistance of PAEK-toughened BMI and graphite fiber composite laminates[J]. Chinese Journal of Aeronautics, 2009, 22(1):87-96.
[7] 陈浩然, 李勇, 还大军, 等. T700/PEEK热塑性自动铺放预浸纱制备质量控制及性能研究[J]. 航空学报, 2018, 39(6):421842. CHEN H R, LI Y, HUAN D J, et al. Quality control and mechanical properties of T700/PEEK thermoplastic prepreg for AFP[J]. Acta Aeronauticaet et Astronautica Sinica, 2018, 39(6):421842(in Chinese).
[8] 宋清华, 肖军, 文立伟, 等. 热塑性复合材料自动铺放过程中温度场研究[J]. 材料工程, 2018, 46(1):83-91. SONG Q H, XIAO J, WEN L W, et al. Temperature field during automated fiber placement for thermoplastic composite[J]. Journal of Materials Engineering, 2018, 46(1):83-91(in Chinese).
[9] 宋清华, 肖军, 文立伟, 等. 自动铺放成型热塑性复合材料的非等温结晶动力学研究[J]. 材料工程, 2018, 46(4):120-126. SONG Q H, XIAO J, WEN L W, et al. Non-isothermal crystallinzation kinetics of thermoplastic composite for automated fiber placement[J]. Journal of Materials Engineering, 2018, 46(4):120-126(in Chinese).
[10] 张随山, 包筱梅, 许砚琦, 等. 碳纤维/聚苯硫醚复合材料复合工艺及力学性能的研究[J]. 航空学报, 1993, 14(6):326-329. ZHANG S S, BAO X M, XU Y Q, et al. Study on the processing and mechanical properties of continuous carbon fiber reinforced poly(phenylene sulfide)(PPS) composite[J]. Acta Aeronautica et Astronautica Sinica, 1993, 14(6):326-329(in Chinese).
[11] COMERA J, RAY D, OBANDE W O, et al. Mechanical characterisation of carbon fibre-PEEK manufactured by laser-assisted automated-tape-placement and autoclave[J]. Composites Part A:Applied Science and Manufacturing, 2015, 69:10-20.
[12] 唐见茂. 航空航天复合材料非热压罐成型研究进展[J]. 航天器环境工程, 2014, 31(6):577-583. TANG J M. Progress in the out of autoclave process in aerospace composites[J]. Spacecraft Environment Engineering, 2014, 31(6):577-583(in Chinese).
[13] MANSON J A, SEFERIS J C. Autoclave processing of PEEK/carbon fiber composites[J]. Journal of Thermoplastic Composite Materials, 1989, 2(1):34-39.
[14] DARA P H, LOOS A C. Thermoplastic matrix composite processing model[R]. Virginia Polytechnic Institute and State University, 1985.
[15] LEE W I, SPRINGER G S. A model for the manufacturing process of thermoplastic matrix composites[J]. Composite Materials, 1987, 21(11):1017-1055.
[16] WOOL R P, O'CONNOR K M. A theory of crack healing in polymers[J]. Journal of Applied Physics, 1981, 52(10):5953-5963.
[17] KIM Y H, WOOL R P. Theory of healing at a polymer-polymer interface[J]. Macromolecules, 1983, 16(7):1115-1120.
[18] WOOL R P, YUAN B L, MCGAREL O J. Welding of polymer interfaces[J]. Polymer Engineering & Science, 1989, 29(19):1340-1367.
[19] MANTELL S C, SPRINGER G S. Manufacturing process models for thermoplastic composites[J]. Journal of Composite Materials, 1992, 26(16):2348-2377.
[20] 李玥华. 热塑性预浸丝变角度铺放及其轨迹规划的研究[D]. 哈尔滨:哈尔滨工业大学, 2013. LI Y H. Research on thermoplastic towpreg variable angle placement and trajectory planning[D]. Harbin:Harbin Institute of Technology, 2013(in Chinese).
[21] 宋清华, 刘卫平, 陈吉平, 等. 碳纤维增强聚苯硫醚复合材料激光加热原位成型过程中温度场研究[J]. 复合材料学报, 2019, 36(2):283-292. SONG Q H, LIU W P, CHEN J P, et al. Study on temperature field for laser heating of carbon fiber reinforced polyphenylene sulphide matrix composite in an automated fiber placement process[J]. Acta Materiae Compositae Sinica, 2019, 36(2):283-292(in Chinese).
[22] 吴兰峰. 聚苯硫醚复合材料的结构与性能[D]. 扬州:扬州大学, 2008. WU L F. Research on the structure and performance for polyphenylene sulfide composites[D]. Yangzhou:Yangzhou University, 2008(in Chinese).
[23] AmericanSociety for Testing and Material. Standard test method for short beam strength of polymer matrix composite materials and their laminates:ASTM D 2344/D 2344M-00(06)[S]. Philadelphia:ASTM International, 2010.
Outlines

/