Solid Mechanics and Vehicle Conceptual Design

Resonance in the orbital motion of solar power station due to gravitational orbit-attitude coupling

  • LIU Yuliang ,
  • WU Shu'nan ,
  • ZHANG Kaiming ,
  • WU Zhigang
Expand
  • 1. School of Aeronautics and Astronautics, Dalian University of Technology, Dalian 116024, China 2. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China

Received date: 2018-04-11

  Revised date: 2018-05-14

  Online published: 2018-08-30

Supported by

National Natural Science Foundation of China (11432010,11502040); the Fundamental Research Funds for the Central Universities (DUT15LK31)

Abstract

The gravitational orbit-attitude coupling effect on the orbital motion of an arbitrarily phased array space solar power station is studied in this paper. The dynamic equations of the orbital and attitude motions of the space solar power station, considering the effect of gravitational coupling, are firstly derived from the Hamilton dynamics. The arbitrarily phased array space solar power station is simplified as a rigid body and its gravitational potential is expanded in a Taylor series in a small ratio (spacecraft size/orbital radius), and is retained up to the second order terms. Then the equations are analyzed through analytic methods and a resonance phenomenon of the orbital motion caused by the gravitational orbit-attitude coupling effect is discovered when the attitude motion satisfies some certain conditions. In addition, the effect of gravitational orbit-attitude coupling will also result in secular orbital drift of the space solar power station, and the drift can be eliminated by selecting appropriate initial conditions of the orbital motion. The orbit of the space solar power station is unstable under the effect of gravitational orbit-attitude coupling when there exists a constant earth-pointing error in the pitch angle. Finally, numerical simulations are provided, and the results prove the correctness of the analyses above.

Cite this article

LIU Yuliang , WU Shu'nan , ZHANG Kaiming , WU Zhigang . Resonance in the orbital motion of solar power station due to gravitational orbit-attitude coupling[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(12) : 222194 -222194 . DOI: 10.7527/S1000-6893.2018.22194

References

[1] GLASER P E. Power from the sun:Its future[J]. Science, 1968, 162(3856):857-861.
[2] 侯欣宾, 王立, 张兴华, 等. 多旋转关节空间太阳能电站概念方案设计[J]. 宇航学报, 2015, 36(11):1332-1338. HOU X B, WANG L, ZHANG X H, et al. Concept design on multi-rotary joints SPS[J]. Journal of Astronautics, 2015, 36(11):1332-1338(in Chinese).
[3] SASAKI S, TANAKA K, HIGUCHI K, et al. A new concept of solar power satellite:Tethered-SPS[J]. Acta Astronautica, 2007, 60(3):153-165.
[4] SEBOLDT W, KLIMKE M, LEIPOLD M, et al. European sail tower SPS concept[J]. Acta Astronautica, 2001, 48(5):785-792.
[5] YANG Y, ZHANG Y, DUAN B, et al. A novel design project for space solar power station (SSPS-OMEGA)[J]. Acta Astronautica, 2016, 121:51-58.
[6] MANKINS J, KAYA N, VASILE M. SPS-ALPHA:The first practical solar power satellite via arbitrarily large phased array (A 2011-2012 NIAC Project)[C]//10th International Energy Conversion Engineering Conference. Reston, VA:AIAA, 2012.
[7] SINCARSIN G B, HUGHES P C. Gravitational orbit-attitude coupling for very large spacecraft[J]. Celestial Mechanics, 1983, 31(2):143-161.
[8] GRAF J O F. Orbital motion of the solar power satellite:TR-N78-1548[R]. Washington, D.C.:NASA, 1977.
[9] 魏乙, 邓子辰, 李庆军, 等. 光压摄动对空间太阳能电站轨道的影响研究[J]. 应用数学与力学, 2017, 38(4):399-409. WEI Y, DENG Z C, LI Q J, et al. Effects of solar radiation pressure on orbits of space solar power station[J]. Applied Mathematics & Mechanics, 2017, 38(4):399-409(in Chinese).
[10] WIE B, ROITHMAYR C M. Attitude and orbit control of a very large geostationary solar power satellite[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(3):439-451.
[11] MCNALLY I, SCHEERES D, RADICE G. Locating large solar power satellites in the geosynchronous Laplace plane[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(3):489-505.
[12] MCNALLY I, SCHEERES D, RADICE G. Attitude dynamics of large geosynchronous solar power satellites[C]//AIAA/AAS Astrodynamics Specialist Conference. Reston, VA:AIAA, 2014.
[13] 刘玉亮, 邬树楠, 吴志刚, 等. 空间太阳能电站地球同步拉普拉斯轨道动力学特性[J]. 中国空间科学技术, 2016, 36(5):1-8. LIU Y L, WU S N, WU Z G, et al. Dynamic characteristics of geosynchronous Laplace orbit for space solar power station[J]. Chinese Space Science and Technology, 2016, 36(5):1-8(in Chinese).
[14] 邓子辰, 曹珊珊, 李庆军, 等. 基于辛Runge-Kutta方法的太阳帆塔动力学特性研究[J]. 中国科学:技术科学, 2016, 46(12):1242-1253. DENG Z C, CAO S S, LI Q J, et al. Dynamic behavior of sail tower SPS based on the symplectic Runge-Kutta method[J]. Scientia Sinica Technologica, 2016, 46(12):1242-1253(in Chinese).
[15] 文奋强, 邓子辰, 魏乙, 等. 太阳帆塔轨道和姿态耦合动力学建模及辛求解[J]. 应用数学与力学, 2017, 38(7):762-768. WEN F Q, DENG Z C, WEI Y, et al. Dynamic modeling and symplectic solution of coupled orbit and attitude for solar sail towers[J]. Applied Mathematics & Mechanics, 2017, 38(7):762-768(in Chinese).
[16] 魏乙, 邓子辰, 李庆军, 等. 空间太阳能电站的轨道, 姿态和结构振动的耦合动力学建模及辛求解[J]. 动力学与控制学报, 2016, 14(6):513-519. WEI Y, DENG Z C, LI Q J, et al. Coupling dynamic modeling among orbital motion, attitude motion and structural vibration and symplectic solution of SPS[J]. Journal of Dynamics and Control, 2016, 14(6):513-519(in Chinese).
[17] ISHIMURA K, HIGUCHI K. Coupling among pitch motion, axial vibration, and orbital motion of large space structures[J]. Journal of Aerospace Engineering, 2008, 21(2):61-71.
[18] WANG Y, XU S J. Gravitational orbit-rotation coupling of a rigid satellite around a spheroid planet[J]. Journal of Aerospace Engineering, 2012, 27(1):140-150.
[19] ASHENBERG J. Mutual gravitational potential and torque of solid bodies via inertia integrals[J]. Celestial Mechanics and Dynamical Astronomy, 2007, 99(2):149-159.
[20] LIU Y L, WU S N, ZHANG K M, et al. Gravitational orbit-attitude coupling dynamics of a large solar power satellite[J]. Aerospace Science and Technology, 2017, 62:46-54.
[21] ZHAO Y, ZHANG J R, ZHANG Y, et al. Gravitational force and torque on a solar power satellite considering the structural flexibility[J]. Acta Astronautica, 2017, 140:322-337.
[22] 刘玉亮, 邬树楠, 刘家夫, 等. 空间太阳能电站重力姿态-轨道-结构耦合特性[J]. 航空学报, 2017, 38(12):221244. LIU Y L, WU S N, LIU J F, et al. Gravitational attitude-orbit-structure coupling of space solar power station[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):221244(in Chinese).
[23] MORAN J P. Effects of plane librations on the orbital motion of a dumbbell satellite[J]. ARS Journal, 1961, 31(8):1089-1096.
[24] YU E Y. Long-term coupling effects between librational and orbital motions of a satellite[J]. AIAA Journal, 1964, 2(3):553-555.
[25] MOHAN S N, LANGE J V, LANGE B O. Interaction between attitude libration and orbital motion of a rigid body in a near Keplerian orbit of low eccentricity[J]. Celestial Mechanics, 1972, 5(2):157-173.
[26] HUGHES P C. Spacecraft attitude dynamics[M]. New York:Dover Publications, 2004:298-300.
Outlines

/