Review

Review of intelligent design of electrified aircraft power system

  • WANG Li ,
  • DAI Zehua ,
  • YANG Shanshui ,
  • MAO Ling ,
  • YAN Yangguang
Expand
  • Centre for More-Electric-Aircraft Power System of Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Online published: 2018-08-27

Supported by

National Natural Science Foundation of China (51777092)

Abstract

Energy crisis and environmental problem propel the development of green aviation. Electrification of aircraft is the approach to green aviation, and has become the future direction of aviation technology. This paper introduces the history of the aircraft electrification, describes the key technologies and hot topics of the electrified aircraft power system, and then analyzes the key technologies of the design of advanced aircraft power system. The paper also points out the characteristics of the integration and intelligence of the aircraft power system. After that, problems of the design of aircraft power system are analyzed to help build theoretical framework of intelligent design platform of advanced aircraft power system. Functions and characteristics of the platform are proposed, and the key technologies support the intelligent power system design are analyzed, pointing out the future directions of intelligent design of aviation.

Cite this article

WANG Li , DAI Zehua , YANG Shanshui , MAO Ling , YAN Yangguang . Review of intelligent design of electrified aircraft power system[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(2) : 522405 -522405 . DOI: 10.7527/S1000-6893.2018.22405

References

[1] HERNANDEZ D, SAUTREUIL M, RETIERE N, et al. A new methodology for aircraft HVDC power systems design[C]//IEEE International Conference on Industrial Technology. Piscataway, NJ:IEEE Press, 2009:1-6.
[2] RIU D, SAUTREUIL M, RETIÈRE N, et al. Control and design of DC grids for robust integration of electrical devices. Application to aircraft power systems[J]. International Journal of Electrical Power & Energy Systems, 2014, 58(2):181-189.
[3] 郭生荣. 航空机电系统综合技术发展[J]. 航空精密制造技术, 2016, 52(1):1-6. GUO S R. Development of aviation electromechanical system integration technology[J]. Aviation Precision Manufacturing Technology, 2016, 52(1):1-6(in Chinese).
[4] 张兰红, 胡育文, 黄文新. 异步电机起动/发电系统起动向发电的转换研究[J]. 航空学报, 2005, 26(3):356-361. ZHANG L H, HU Y W, HUANG W X. Research on the conversion from starting mode to generating mode of induction machine starter/generator system[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(3):356-361(in Chinese).
[5] 张方华, 龚春英, 邓翔. 航空静止变流器的研究综述[J]. 南京航空航天大学学报, 2014, 46(1):19-26. ZHANG F H, GONG C Y, DENG X. Review of aeronautic static inverter[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(1):19-26(in Chinese).
[6] 阮立刚, 王莉. 一种新型直流固态功率控制器行为模型[J]. 航空学报, 2012, 33(1):129-137. RUAN L G, WANG L. A novel behavioral model of solid state power controller[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(1):129-137(in Chinese).
[7] 白龙, 孙楚, 周元钧. 航空机电作动器的混合整流全状态反馈控制[J]. 航空学报, 2016, 37(6):1940-1952. BAI L, SUN C, ZHOU Y J. Full-state feedback control of a novel hybrid rectifier applied to aircraft electric actuator load[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6):1940-1952(in Chinese).
[8] 相里康, 马瑞卿. 飞机全电刹车机电作动系统上电自检测[J]. 航空学报, 2016, 37(12):3832-3842. XIANG L K, MA R Q. Power-on self-test of electro-mechanical actuation system for aircraft electric braking[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3832-3842(in Chinese).
[9] 王丹阳. 宽体客机电网实时仿真技术研究[D]. 南京:南京航空航天大学, 2017:52-66. WANG D Y. Research on real time simulation of wide-body aircraft electric power system[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017:52-66(in Chinese).
[10] 雷屹坤. 飞机综合一体化热/能量管理系统方案研究[D]. 南京:南京航空航天大学, 2014:18-30. LEI Y K. Research on scheme of integrated thermal and energy management system of aircraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014:18-30(in Chinese).
[11] 郑先成, 张晓斌, 黄铁山. 国外飞机电气技术的现状及对我国多电飞机技术发展的考虑[J]. 航空计算技术, 2007, 37(5):120-122. ZHENG X C, ZHANG X B, HUANG T S. States of foreign aircraft electric technologies and consideration on our aircraft electric technologic developments[J]. Aeronautical Computing Technique, 2007, 37(5):120-122(in Chinese).
[12] FELDER J L, BROWN G V, KIM H D, et al. Turboelectric distributed propulsion in a hybrid wing body aircraft:ISABE-2011-1340[R]. Washington, D.C.:NASA Glenn Research Center, 2011.
[13] BERTON J J, KIM H D, SINGH R, et al. Turboelectric distributed propulsion benefits on the N3-X vehicle[J]. Aircraft Engineering and Aerospace Technology:An International Journal, 2014, 86(6):558-561.
[14] BROWN G. Weights and efficiencies of electric components of a turboelectric aircraft propulsion system[C]//AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston, VA:AIAA, 2013:1-18.
[15] ARMSTRONG M J, ROSS C A H, BLACKWELDER M J, et al. Propulsion system component considerations for NASA N3-X turboelectric distributed propulsion system[J]. SAE International Journal of Aerospace, 2015, 5(2):344-353.
[16] VRATNY P C, KUHN H, HORNUNG M. Influences of voltage variations on electric power architectures for hybrid electric aircraft[J]. CEAS Aeronautical Journal, 2017, 8(1):31-43.
[17] JONES C E, NORMAN P J, GALLOWAY S J, et al. Comparison of candidate architectures for future distributed propulsion aircraft[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(6):1-9.
[18] ARMSTRONG M, ROSS C, PHILLIPS D, et al. Stability, transient response, control, and safety of a high-power electric grid for turboelectric propulsion of aircraft:NASA/CR-2013-217865[R]. Washington, D.C.:NASA, 2013.
[19] ARMSTRONG M J, ROSS C A H, BLACKWELDER M J, et al. Trade studies for NASA N3-X turboelectric distributed propulsion system electrical power system architecture[J]. SAE International Journal of Aerospace, 2012, 5(2):325-336.
[20] ARMSTRONG M J, BLACKWELDER M, BOLLMAN A, et al. Architecture, voltage, and components for a turboelectric distributed propulsion electric grid:NASA/CR-2015-218440[R]. Washington, D.C.:NASA, 2015.
[21] NALIANDA D, SINGH R. Turbo-electric distributed propulsion opportunities, benefits and challenges[J]. Aircraft Engineering and Aerospace Technology:An International Journal, 2014, 896(6):543-549.
[22] GOHARDANI A S, DOULGERIS G, SINGH R. Challenges of future aircraft propulsion technology and its potential application for the all electric commercial aircraft[J]. Progress in Aerospace Sciences, 2011, 47(5):369-391.
[23] MALKIN P, PAGONIS M. Superconducting electric power systems for hybrid electric aircraft[J]. Aircraft Engineering and Aerospace Technology, 2014, 86(6):515-518.
[24] BERG F, PALMER J, MILLER P, et al. HTS electrical system for a distributed propulsion aircraft[J]. IEEE Transactions on Applied Superconductivity, 2015, 25(3):1-5.
[25] 孔祥浩, 张卓然, 陆嘉伟, 等. 分布式电推进飞机电力系统研究综述[J]. 航空学报, 2018, 39(1):021651. KONG X H, ZHANG Z R, LU J W, et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):021651(in Chinese).
[26] 张卓然, 于立, 李进才, 等. 飞机电气化背景下的先进航空电机系统[J]. 南京航空航天大学学报, 2017, 49(5):622-634. ZHANG Z R, YU L, LI J C, et al. Key technologies of advanced aircraft electrical machine systems for aviation electrification[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(5):622-634(in Chinese).
[27] 黄俊, 杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报, 2016, 37(1):57-68. HUANG J, YANG F T. Development and challenges of electric aircraft with new energies[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):57-68(in Chinese).
[28] ANTCLIFF K R, CAPRISTAN F M. Conceptual design of the Parallel Electric-Gas Architecture with Synergistic Utilization Scheme (PEGASUS) concept[C]//AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, VA:AIAA, 2017:1-6.
[29] 宋利康, 郑堂介, 朱永国, 等. 飞机脉动总装智能生产线构建技术[J]. 航空制造技术, 2018(Z1):28-32. SONG L K, ZHENG T J, ZHU Y G, et al. Construction technologies of intelligent pulse production line for aircraft final assembly[J]. Manufacturing Technology & Machine Tool, 2018(Z1):28-32(in Chinese).
[30] 帅朝林, 陈雪梅, 邱世广. 虚拟现实技术在航空智能制造中的应用思考与展望[J]. 航空制造技术, 2016, 59(16):26-33. SHUAI C L, CHEN X M, QIU S G. Thinking and prospect of virtual reality application in aerospace intelligent manufacturing[J]. Manufacturing Technology & Machine Tool, 2016, 59(16):26-33(in Chinese).
[31] 曾艺. 民用飞机客舱智能舷窗系统设计[J]. 航空科学技术, 2015, 26(8):53-56. ZENG Y. Design of cabin smart window system for civil aircrafts[J]. Aeronautical Science & Technology, 2015, 26(8):53-56(in Chinese).
[32] BUSCHHORN S T, KESSLER S S, LACHMANN N, et al. Electrothermal icing protection of aerosurfaces using conductive polymer nanocomposites[C]//54th AIAA/ASME/ASCE/AHS/ASC Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2013:AIAA-2013-1729.
[33] 李永锋. 宽体客机飞控电作动系统设计[J]. 航空学报, 2017, 38(S1):147-155. LI Y F. Electrically powered actuation system design for long range wide body commercial aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1):147-155(in Chinese).
[34] 孟繁鑫, 王瑞琪, 高赞军, 等. 多电飞机电动环境控制系统关键技术研究[J]. 航空科学技术, 2018, 29(2):1-8. MENG F X, WANG R Q, GAO Z J, et al. Research of key technology for the more electrical aircraft electric environmental control system[J]. Aeronautical Science and Technology, 2018, 29(2):1-8(in Chinese).
[35] 袁起航, 林贵平, 李广超, 等. 电脉冲除冰系统电磁脉冲力仿真分析[J]. 北京航空航天大学学报, 2016, 42(3):632-638. YUAN Q H, LIN G P, LI G C, et al. Simulation and analysis on electromagnetic impulse force of electro-impulse de-icing system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(3):632-638(in Chinese).
[36] 高泽海, 马存宝, 宋东. 飞机燃油供油系统性能退化与故障预测[J]. 西北工业大学学报, 2015(2):209-215. GAO Z H, MA C B, SONG D. Aircraft fuel feeding system performance degradation and failure prediction[J]. Journal of Northwestern Polytechnical University, 2015(2):209-215(in Chinese).
[37] LÜCKEN A, BROMBACH J, SCHULZ D. Design and protection of a high voltage DC onboard grid with integrated fuel cell system on more electric aircraft[C]//Electrical Systems for Aircraft, Railway and Ship Propulsion. Piscataway, NJ:IEEE Press, 2010:1-6.
[38] SANTARELLI M, CABRERA M, CALIÍ M. Solid oxide fuel based auxiliary power unit for regional jets:Design and mission simulation with different cell geometries[J]. Journal of Fuel Cell Science & Technology, 2010, 7(2):58-66.
[39] ROMEO G, CESTINO E, BORELLO F, et al. An engineering method for air-cooling design of 2-seat propeller driven aircraft powered by fuel cells[J]. Journal of Aerospace Engineering, 2011, 24(1):79-88.
[40] DAI Z H, WANG L, YANG S S. Fuel cell based auxiliary power unit in more electric aircraft[C]//IEEE Transportation Electrification Conference and Expo, Asia-Pacific. Piscataway, NJ:IEEE Press, 2017:1-6.
[41] 阮立刚, 王莉, 叶家瑜, 等. 基于混合信号状态机的交流固态功率控制器功能模型[J]. 航空学报, 2017, 38(11):321133. RUAN L G, WANG L, YE J Y, et al. Functional modeling of AC solid state power controller based on mixed signal state machine[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11):321133(in Chinese).
[42] SCHROTER T, SCHULZ D. The electrical aircraft network-benefits and drawbacks of modifications[J]. IEEE Transactions on Aerospace & Electronic Systems, 2013, 49(1):189-200.
[43] COTTON I, NELMS A, HUSBAND M. Defining safe operating voltages for aerospace electrical systems[C]//Electrical Insulation Conference and Electrical Manufacturing Expo. Piscataway, NJ:IEEE Press, 2007:67-71.
[44] COTTON I, NELMS A. High voltage aircraft power systems[J]. IEEE Aerospace & Electronic Systems Magazine, 2008, 23(2):25-32.
[45] CHRISTOU I, NELMS A, COTTON I, et al. Choice of optimal voltage for more electric aircraft wiring systems[J]. IET Electrical Systems in Transportation, 2011, 1(1):24-30.
[46] NYA B H, BROMBACH J, SCHULZ D. Benefits of higher voltage levels in aircraft electrical power systems[C]//Electrical Systems for Aircraft, Railway and Ship Propulsion. Piscataway, NJ:IEEE Press, 2012:1-5.
[47] NYA B, BROMBACH J, SCHRÖTER T, et al. Weight evaluation of cabin power architecture on smaller civil aircraft[C]//International Workshop on Aircraft System Technologies. Hamburg, Germany:Deutsche Nationalbibliothek, 2011:1-10.
[48] BROMBACH J, LUCKEN A, NYA B, et al. Comparison of different electrical HVDC-architectures for aircraft application[C]//Electrical Systems for Aircraft, Railway and Ship Propulsion. Piscataway, NJ:IEEE Press, 2012:1-6.
[49] SCHROETER T, NYA B H, SCHULZ D. Potential analysis for the optimization of the electrical network of large modern civil and future single aisle aircraft and examples of the network capacity utilisation[C]//Electrical Systems for Aircraft, Railway and Ship Propulsion. Piscataway, NJ:IEEE Press, 2010:1-7.
[50] KOSTAKIS T, NORMAN P J, GALLOWAY S J. Assessing network architectures for the more electric engine and aircraft[C]//Power Engineering Conference. Piscataway, NJ:IEEE Press, 2014:1-6.
[51] NUZZO P, XU H, OZAY N, et al. A contract-based methodology for aircraft electric power system design[J]. IEEE Access, 2014, 2(2):1-25.
[52] 陈娟, 王占林. 飞机多机电系统综合仿真的研究[J]. 仪器仪表学报, 2003, 24(4):638-640. CHEN J, WANG Z L. Investigation of integrating management of multiple electro-mechanical system[J]. Chinese Journal of Scientific Instrument, 2003, 24(4):638-640(in Chinese).
[53] 郑伟, 解向军. 先进战斗机综合机电系统试验技术研究[J]. 飞机设计, 2010, 30(5):31-35. ZHENG W, XIE X J. Research on integrated electromechanical systems test technology for advanced fighter[J]. Aircraft Design, 2010, 30(5):31-35(in Chinese).
[54] 郭鹏, 李亚晖, 孙允明. 机载机电综合管理系统架构建模与仿真方法[J]. 电光与控制, 2017, 24(12):100-105. GUO P, LI Y H, SUN Y M. Architecture modeling and simulation methods of integrated electromechanical management system[J]. Electronics Optics & Control, 2017, 24(12):100-105(in Chinese).
[55] SINAN Y. Optimal controller design for more-electric aircraft power systems[D]. Pittsburgh:University of Pittsburgh, 2011:22-27.
[56] XU H. Design, specification, and synthesis of aircraft electric power systems control logic[D]. Pasadena:California Institute of Technology, 2013:42-73.
[57] MAASOUMY M, NUZZO P, IANDOLA F, et al. Optimal load management system for aircraft electric power distribution[C]//IEEE Conference on Decision and Control. Piscataway, NJ:IEEE Press, 2014:2939-2945.
[58] SHAHSAVARI B, MAASOUMY M, SANGIOVANNI-VINCENTELLI A, et al. Stochastic model predictive control design for load management system of aircraft electrical power distribution[C]//American Control Conference. Piscataway, NJ:IEEE Press, 2015:3649-3655.
[59] XIA X, LAWSON C P. The development of a design methodology for dynamic power distribution management on a civil transport all electric aircraft[J]. Aerospace Science & Technology, 2013, 25(1):125-131.
[60] XIA X. Dynamic power distribution management for all electric aircraft[D]. Bedfordshire:Cranfield University, 2011:67-79.
[61] 彭城. 多电飞机电能管理关键技术研究[D]. 南京:南京航空航天大学, 2014:31-34. PENG C. Key technologies of electric power management for more electrical aircraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014:31-34(in Chinese).
[62] 吴雅婷. 宽体客机电网管理技术研究和实现[D]. 南京:南京航空航天大学, 2016:11-16. WU Y T. Research and realization on grid-management technology of wide-body airplane[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016:11-16(in Chinese).
[63] 唐彬鑫. 飞机多电化负载特性分析和管理技术研究[D]. 南京:南京航空航天大学, 2017:31-36. TANG B X. Research on characteristics analysis and management of MEA electrical loads[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017:31-36(in Chinese).
[64] 葛玉雪, 宋笔锋, 裴扬. 基于可用能的多电飞机能量利用率分析方法[J]. 航空学报, 2014, 35(5):1276-1283. GE Y X, SONG B F, PEI Y. Analysis method of more-electric aircraft energy efficiency based on exergy[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5):1276-1283(in Chinese).
[65] BARRUEL F, CAISLEY A, RETIERE N, et al. Stability approach for vehicles DC power network:Application to aircraft on-board system[C]//Power Electronics Specialists Conference. Piscataway, NJ:IEEE Press, 2005:1163-1169.
[66] AREERAK K N, WU T, BOZHKO S V, et al. Aircraft power system stability study including effect of voltage control and actuators dynamic[J]. IEEE Transactions on Aerospace & Electronic Systems, 2011, 47(4):2574-2589.
[67] AREERAK K N, BOZHKO S V, ASHER G M. DQ-transformation approach for modelling and stability analysis of AC-DC power system with controlled PWM rectifier and constant power loads[C]//200813th International Power Electronics and Motion Control Conference. Piscataway, NJ:IEEE Press, 2008:2049-2054.
[68] BROMBACH J, JORDAN M, GRUMM F, et al. Influence of small constant-power-loads on the power supply system of an aircraft[C]//International Conference on Compatibility and Power Electronics. Piscataway, NJ:IEEE Press, 2013:97-102.
[69] ZHENG X, LIU W, ZHANG X. Voltage stability analysis for aircraft variable frequency generation system loaded with PWM rectifier[C]//2013 IEEE 14th Workshop on Control and Modeling for Power Electronics (COMPEL) Piscataway, NJ:IEEE Press, 2013:1-5.
[70] EL-KISHKY H, EBRAHIMI H. On modeling and control of advanced aircraft electric power systems:System stability and bifurcation analysis[J]. International Journal of Electrical Power & Energy Systems, 2014, 63:246-259.
[71] 朱成花, 严仰光. 一种改进的阻抗比判据[J]. 南京航空航天大学学报, 2006, 38(3):315-320. ZHU C H, YAN Y G. Improved impedance criterion[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2006, 38(3):315-320(in Chinese).
[72] 李永东, 章玄, 许烈. 多电飞机高压直流供电系统稳定性研究综述[J]. 电源学报, 2017, 15(2):2-11. LI Y D, ZHANG X, XU L. A survey on stability analysis for HVDC power system in MEA[J]. Journal of Power Supply, 2017, 15(2):2-11(in Chinese).
[73] KUHN M R, JI Y, SCHRDER D. Stability studies of critical DC power system component for more electric aircraft using μ sensitivity[C]//Mediterranean Conference on Control & Automation. Piscataway, NJ:IEEE Press, 2007:1-6.
[74] SUMSUROOAH S, ODAVIC M, BOZHKO S. A modeling methodology for robust stability analysis of nonlinear electrical power systems under parameter uncertainties[J]. IEEE Transactions on Industry Applications, 2016, 52(5):4416-4425.
[75] WENG K H, CHEN T, LING K V, et al. Variance analysis of robust state estimation in power system using influence function[J]. International Journal of Electrical Power & Energy Systems, 2017, 92:53-62.
[76] CHEN T. Robust state estimation for power systems via moving horizon strategy[J]. Sustainable Energy Grids & Networks, 2017, 10:46-54.
[77] HORCH A, NACERI A, AYAD A. Power system stabilizer design using H robust technique to enhance robustness of power system[C]//Renewable and Sustainable Energy Conference. Piscataway, NJ:IEEE Press, 2015:884-889.
[78] PERES W, JÚNIOR I C S, FILHO J A P. Gradient based hybrid metaheuristics for robust tuning of power system stabilizers[J]. International Journal of Electrical Power & Energy Systems, 2018, 95:47-72.
[79] FURTAT I B, FRADKOV A L. Robust control of multi-machine power systems with compensation of disturbances[J]. International Journal of Electrical Power & Energy Systems, 2015, 73:584-590.
[80] CAMPOS V A F D, CRUZ J J D. Robust hierarchized controllers using wide area measurements in power systems[J]. International Journal of Electrical Power & Energy Systems, 2016, 83:392-401.
[81] BRIVIO C, MONCECCHI M, MANDELLI S, et al. A novel software package for the robust design of off-grid power systems[J]. Journal of Cleaner Production, 2017, 166:668-679.
[82] WU T, BOZHKO S V, ASHER G M, et al. Accelerated functional modeling of aircraft electrical power systems including fault scenarios[C]//200935th Annual Conference of IEEE Industrial Electronics. Piscataway, NJ:IEEE Press, 2009:2537-2544.
[83] 代京, 张平, 李行善, 等. 航空机电系统测试性建模与分析新方法[J]. 航空学报, 2010, 31(2):277-284. DAI J, ZHANG P, LI X S, et al. Novel approach for aviation electromechanical system testability modeling and analysis[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2):277-284(in Chinese).
[84] MENG L, YANG S, WANG L, et al. Integrated simulation of electric power systems based on LabVIEW and Simulink[C]//International Conference on Future Computer Sciences and Application. Piscataway, NJ:IEEE Press, 2011:78-81.
[85] WANG C, HUANG J. Simulation and evaluation models of aircraft power supply system based on Simulink/LabVIEW[C]//Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control. Piscataway, NJ:IEEE Press, 2014:81-86.
[86] LI B, LI W, ZHANG X, et al. Modeling and simulation of aircraft power supply system based on Dymola and Modelica[C]//International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference. Piscataway, NJ:IEEE Press, 2017:1-6.
[87] DAI Z H, WANG L, YANG S S. Multi-signal model in application of spacecraft power system testability[C]//AIAA Modeling and Simulation Technologies Conference. Reston, VA:AIAA, 2016:1-7.
[88] MODELISAR. Functional mock-up interface for model exchange[J]. Information Technology for European Advancement, 2010(1):17-23.
[89] 李伟林, 张晓斌, 董延军. 电力系统综合仿真方法研究(一):VPNET(英文)[J]. 中国电机工程学报, 2012, 32(13):95-102. LI W L, ZHANG X B, DONG Y J. Study of co-simulation methods applied in power systems (Part I):VPNET[J]. Proceedings of the CSEE, 2012, 32(13):95-102(in Chinese).
[90] 李浩敏. 基于模型的飞机系统架构设计综述[J]. 民用飞机设计与研究, 2017(3):17-20. LI H M. Review on the model-based A/C system architecture design[J]. Civil Aircraft Design and Research, 2017(3):17-20(in Chinese).
[91] 陆清, 吴双. 民用飞机虚拟集成试验技术研究[J]. 民用飞机设计与研究, 2017(2):1-7. LU Q, WU S. The technique research on virtual integration test for civil aircraft[J]. Civil Aircraft Design and Research, 2017(2):1-7(in Chinese).
[92] 宋文滨. 未来飞机的智能化技术综述与发展展望[J]. 民用飞机设计与研究, 2017(3):122-129. SONG W B. Smart technologies for future aircraft[J]. Civil Aircraft Design & Research, 2017(3):122-129(in Chinese).
[93] 吴光辉, 刘虎. 大型客机数字化设计支持体系框架[J]. 航空学报, 2008, 29(5):1386-1394. WU G H, LIU H. Framework of digital design support system-of-systems for large airliners[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(5):1386-1394(in Chinese).
[94] 邰忠天, 田玉斌, 张卓. 飞机电气系统数字化设计流程优化研究[J]. 航空科学技术, 2016, 27(6):30-33. TAI Z T, TIAN Y B, ZHANG Z. Research on aircraft EPS digital design flow optimization[J]. Aeronautical Science & Technology, 2016, 27(6):30-33(in Chinese).
[95] ALSINA J. Development of an aircraft design expert system[D]. England:Cranfield University, 1988:36-47.
[96] BALS J, HOFER G, PFEIFFER A, et al. Virtual iron bird-A multidisciplinary modelling and simulation platform for new aircraft system architectures[C]//Deutscher Luft-und Raumfahrkongress 2005, Bonn:German Society for Aeronautics and Astronautics, 2005:1-9.
[97] JI Y, BALS J. A novel Modelica signal analysis tool towards design of more electric aircraft[C]//IEEE International Conference on Computer Science and Information Technology. Piscataway, NJ:IEEE Press, 2010:152-156.
[98] KUHN M R, JI Y, JOOS H D, et al. An approach for stability analysis of nonlinear electrical network using anti optimization[C]//2008 IEEE Power Electronics Specialists Conference. Pissataway, NJ:IEEE Press, 2008:3873-3879.
[99] ROGERSTEN R, XU H, OZAY N, et al. An aircraft electric power testbed for validating automatically synthesized reactive control protocols[C]//International Conference on Hybrid Systems:Computation and Control. New York:ACM, 2013:89-94.
[100] KUHN M R, JI Y. Modelica for large scale aircraft electrical network V&V[C]//Proceedings of the 10th International Modelica Conference. Lund:Modelica Association, 2014:747-756.
[101] ROGERSTEN R, XU H, OZAY N, et al. Control software synthesis and validation for a vehicular electric power distribution testbed[J]. Journal of Aerospace Information Systems, 2014, 11(10):665-678.
[102] BESTER J E, MABWE A M, HAJJAJI A E. A virtual electrical test bench for more electrical aircraft architecture verification and energy management development[C]//European Conference on Power Electronics and Applications. Piscataway, NJ:IEEE Press, 2015:1-10.
[103] PINTO A, BECZ S, REEVE H. Correct-by-construction design of aircraft electric power systems[C]//AIAA Aviation Technology, Integration, and Operations. Reston, VA:AIAA, 2013:1-11.
[104] FU S W J, KARIMI K J, JAKSIC M D, et al. Electrical power system stability optimization system:US 201401220-50A1[P]. 2014-05-01.
[105] LAU M Y. Expert system for aerial vehicle deployment system selection[D]. Toronto:Ryersn University, 2005:26-45.
[106] NOOR A K, VENNERI S L. ISE:Intelligent synthesis environment for future aerospace systems[J]. IEEE Aerospace & Electronic Systems Magazine, 2008, 23(4):31-44.
[107] FRANS V D B, ENGELBRECHT A P. A cooperative approach to particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3):225-239.
[108] 余雄庆, 丁运亮. 多学科设计优化算法及其在飞行器设计中应用[J]. 航空学报, 2000, 21(1):2-7. YU X Q, DING Y L. Multidisciplinary design optimization a survey of its algorithms and applications to aircraft design[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(1):2-7(in Chinese).
[109] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11):3197-3225. HAN Z H. Kriging surrogate model and its application to design optimization:A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese).
[110] 桂业伟, 刘磊, 代光月, 等. 高超声速飞行器流-热-固耦合研究现状与软件开发[J]. 航空学报, 2017, 38(7):87-105. GUI Y W, LIU L, DAI Y G, et al. Research status of hypersonic vehicle fluid-thermal-solid coupling and software development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):87-105(in Chinese).
[111] ZHANG Q, LI H. MOEA/D:A multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6):712-731.
[112] DEB K, JAIN H. Handling many-objective problems using an improved NSGA-Ⅱ procedure[C]//2012 IEEE Congress on Evolutionary Computation (CEC). Piscataway, NJ:IEEE Press, 2012:1-8.
Outlines

/