Special Column on Key Technology in Aerodynamic Strength and Landing Safety of Carrier-based Aircraft

Application of CFD in slipstream effect on propeller aircraft research

  • MA Shuai ,
  • QIU Ming ,
  • WANG Jiantao ,
  • MIAO Tao ,
  • JIANG Xiong
Expand
  • Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2018-05-24

  Revised date: 2018-06-15

  Online published: 2018-08-16

Supported by

National Natural Science Foundation of China (11572339)

Abstract

By solving unsteady Reynolds-averaged Navier-Stokes equations in absolute coordinate system, the effect of propeller slipstream on aerodynamics characteristics of a cruise configuration is studied. Moving overlapping grid technology is adopted to simulate the movement of blades. The fully implicit dual-time method and the multi-grid scheme are used in parallel environment to enhance the calculation efficiency. Comparing with the experimental values in linear region, the lift coefficients of the numerical simulation deviate from the experimental values around 2%; the calculated drag coefficients are relatively large at around 8%; and the pitching moment coefficients are in accordance with the trend of the experiments. The law of influence of slipstream on propeller aircraft is summed up. As the slipstream keeps mixing with the surrounding air during the spatial development, the boundary becomes smeared. As a result, the malformation of the developing slipstream tube affects the analysis of the effect of aircraft. To fix the above problems, flow-fields with and without slipstream are compared. The acceleration effect boundary of the slipstream is acquired by measuring the increments of local dynamic pressure and the wash effect boundary of the slipstream is obtained by measuring the local airflow angle increments. This method can better capture and explain the nonlinear phenomenon of the stability of the propeller aircraft caused by the interference of slipstream on aircraft components. Also, the wake convection and evolution of the slipstream can be revealed by the method. The present work provides certain reference for both the design of propeller aircraft and the research on slipstream effect.

Cite this article

MA Shuai , QIU Ming , WANG Jiantao , MIAO Tao , JIANG Xiong . Application of CFD in slipstream effect on propeller aircraft research[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019 , 40(4) : 622365 -622365 . DOI: 10.7527/S1000-6893.2018.22365

References

[1] 鄂秦, 杨国伟, 李凤蔚, 等. 螺旋桨滑流对飞机气动特性影响的数值分析[J]. 西北工业大学学报, 1997, 15(4):511-516. E Q,YANG G W, LI F W, et al. On coupling effect of two vortex systems of Chinese aircraft with turbo-propellers[J]. Journal of Northwestern Polytechnical University, 1997, 15(4):511-516(in Chinese).
[2] MOENS F, GARDAREIN P. Numerical simulation of the propeller/wing interactions for transport aircraft:AIAA-2001-2404[R]. Reston, VA:AIAA, 2001.
[3] 左岁寒, 杨永. 螺旋桨滑流对带后缘襟翼机翼气动特性影响的数值分析[J]. 航空计算技术, 2007, 37(1):54-57. ZUO S H, YANG Y. Numerical simulation of propeller/high-lift system interaction[J]. Aeronautical Computing Technique, 2007, 37(1):54-57(in Chinese).
[4] 李博, 梁德旺, 黄国平. 基于等效盘模型的滑流对螺旋桨飞机气动性能的影响[J]. 航空学报, 2008, 29(4):845-852. LI B, LIANG D W, HUANG G P. Propeller slipstream effects on aerodynamic performance of turbo-prop airplane based on equivalent actuator disk model[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4):845-852(in Chinese).
[5] 夏贞锋, 杨永. 螺旋桨滑流与机翼气动干扰的非定常数值模拟[J]. 航空学报, 2011, 32(7):1195-1201. XIA Z F, YANG Y. Unsteady numerical simulation of interaction effects of propeller and wing[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7):1195-1201(in Chinese).
[6] 任晓峰, 杨士普, 段卓毅, 等. 基于多参考坐标系的螺旋桨滑流对机翼气动特性影响分析[C]//第十四届全国计算流体力学会议论文集, 2009:582-585. REN X F, YANG S P, DUAN Z Y, et al. The analysis of the slipstream on the wing about aerodynamic and characteristics by multiple reference frame model[C]//Proceeding of the 14th Computational Fluid Dynamics Conference, 2009:582-585(in Chinese).
[7] 张刘, 白俊强, 李华星, 等. 螺旋桨滑流与机翼之间气动干扰影响研究[J]. 航空计算技术, 2012, 42(2):87-91. ZHANG L, BAI J Q, LI H X, et al. Research on aerodynamic interference for propeller slipstream over the wing[J]. Aeronautical Computing Technique, 2012, 42(2):87-91(in Chinese).
[8] ROOSENBOOM E W M, HEIDER A. Propeller slipstream development:AIAA-2007-3810[R]. Reston, VA:AIAA, 2007.
[9] RUIZ-CALAVERA L P, PERDONES-DIAZ D. CFD computation of in-plane propeller shaft loads:AIAA-2013-3798[R]. Reston, VA:AIAA, 2013.
[10] 许建华, 宋文萍, 韩忠华, 等. 基于CFD技术的螺旋桨气动特性研究[J]. 航空动力学报, 2010, 25(5):1103-1109. XU J H, SONG W P, HAN Z H, et al. Aerodynamic performance research of propellers based on CFD technology[J]. Journal of Aerospace Power, 2010, 25(5):1103-1109(in Chinese).
[11] 许和勇, 叶正寅. 螺旋桨非定常滑流数值模拟[J]. 航空动力学报, 2011, 26(1):148-153. XU H Y, YE Z Y. Numerical simulation of unsteady propeller slipstream[J]. Journal of Aerospace Power, 2011, 26(1):148-153(in Chinese).
[12] 段中喆, 刘沛清. 某型螺旋桨滑流对机翼气动性能影响的数值研究[J]. 应用基础与工程科学学报, 2012, 20:215-225. DUAN Z Z, LIU P Q. Numerical researches on the aerodynamic characteristics of a wing influenced by the slipstream of propellers[J]. Journal of Basic Science and Engineering, 2012, 20:215-225(in Chinese).
[13] 杨小川, 王运涛, 王光学, 等. 螺旋桨非定常滑流的高效数值模拟研究[J]. 空气动力学学报, 2014, 32(3):289-294. YANG X C, WANG Y T, WANG G X, et al. Numerical simulation of unsteady propeller slipstream[J]. Acta Aerodynamica Sinica, 2014, 32(3):289-294(in Chinese).
[14] 夏贞锋. 螺旋桨滑流数值模拟方法及气动干扰研究[D]. 西安:西北工业大学, 2015. XIA Z F. Numerical approaches of propeller slipstream simulations and aerodynamic interference analysis[D]. Xi'an:Northwestern Polytechnical University, 2015(in Chinese).
[15] 牟斌. 流动控制数值模拟研究[D]. 绵阳:中国空气动力研究与发展中心, 2006. MOU B. Numerical simulation and investigation of flow control[D]. Mianyang:China Aerodynamics Research and Development Center, 2006(in Chinese).
[16] 肖中云. 旋翼流场数值模拟方法研究[D]. 绵阳:中国空气动力研究与发展中心, 2007. XIAO Z Y. Investigation of computational modeling techniques for rotor flowfields[D]. Mianyang:China Aerodynamics Research and Development Center, 2007(in Chinese).
[17] 陈作斌, 周铸, 牟斌. 多重网格技术研究及其应用[C]//第四届海峡两岸航空航天学术研讨会论文集, 2004. CHEN Z B, ZHOU Z, MOU B. The research and application of multigrid techniques[C]//Fourth Symposium on Cross-Strait Aerospace, 2004(in Chinese).
[18] DAILEY L D, PLETCHER R H. Evaluation of multigrid acceleration for preconditioned time-accurate Navier-Stokes algorithms:AIAA-1995-1668[R]. Reston, VA:AIAA, 1995.
[19] 周铸, 江雄. 多块重叠网格技术研究及其应用[C]//第十二届全国计算流体力学会议论文集, 2004. ZHOU Z, JIANG X. Overlapping multi-block grid technology research and application[R]. Proceeding of the 12th Computational Fluid Dynamics Conference, 2004(in Chinese).
[20] MEAKIN R L. Object X-rays for cutting holes in composite overset structured grid:AIAA-2001-2537[R]. Reston, VA:AIAA, 2001.
[21] LANTERI S. Parallel solutions of compressible flow using overlapping and non-overlapping mesh partitioning strategies[J]. Parallel Computing, 1996(22):943-968.
[22] 朱国林, 徐庆新. 计算流体力学并行计算技术研究综述[J]. 空气动力学学报, 2002, 20(S1):1-6. ZHU G L, XU Q X. Review on parallel computation technique on computational fluid dynamics in CAI[J]. Acta Aerodynamica Sinica, 2002, 20(S1):1-6(in Chinese).
[23] 肖中云, 江雄, 牟斌, 等. 并行环境下外挂物动态分离过程的数值模拟[J]. 航空学报, 2010, 31(8):1509-1516. XIAO Z Y, JIANG X, MOU B, et al. Numerical simulation of dynamic process of store separation in parallel environment[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(8):1509-1516(in Chinese).
[24] EGEBERG T F. Onset and progression of vortical structures for a surface combatant at drift angles 0, 10 and 20 degrees[D]. Trondheim:Norwegian University of Science and Technology, 2013.
Outlines

/