Fluid Mechanics and Flight Mechanics

Efficient surrogate-based aerodynamic design optimization method with adaptive design space expansion

  • WANG Chao ,
  • GAO Zhenghong ,
  • ZHANG Wei ,
  • XIA Lu ,
  • HUANG Jiangtao
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Computational Aerodynamics Institute, China Aerodynamic Research and Development Center, Mianyang 621000, China

Received date: 2017-09-15

  Revised date: 2018-04-17

  Online published: 2018-07-27

Supported by

National Natural Science Foundation of China (11372254,11402288)

Abstract

The infill criterion and design space construction in Kriging-based aerodynamic shape optimization are studied in this paper. A hybrid infill method is proposed, which combines the Expected Improvement (EI) criterion and the Minimum Prediction (MP) criterion using an EI threshold. Global exploration is first implemented by the IE criterion, and local exploitation is then implemented by the MP criterion. Consequently, the convergence rate of Efficient Global Optimization (EGO) is accelerated in a certain design space. To find the global optimum in aerodynamic shape optimization, expansion of the design variable range and multi-round method are employed. Influence of the variable range on the size of design space and density of samples are discussed. To improve the efficiency of samples, an adaptive design space expansion method is proposed. In this method, the design space is dynamic and the range of design variable is expanded in potential dimensions. Accordingly, the samples are allocated efficiently through adaptive expansion of design space boundaries. ADODG airfoil optimization cases show that the adaptive design space expansion method has remarkable superiority over the conventional fixed design space method.

Cite this article

WANG Chao , GAO Zhenghong , ZHANG Wei , XIA Lu , HUANG Jiangtao . Efficient surrogate-based aerodynamic design optimization method with adaptive design space expansion[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(7) : 121745 -121745 . DOI: 10.7527/S1000-6893.2018.21745

References

[1] QUEIPO N V, HAFTKA R T, SHYY W, et al. Surrogate-based analysis and optimization[J]. Progress in Aerospace Sciences, 2005, 41(1):1-28.
[2] FORRESTER A I J, KEANE A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences, 2009, 45(1):50-79.
[3] SIMPSON T W, MAUERY T M, KORTE J J, et al. Kriging models for global approximation in simulation-based multidisciplinary design optimization[J]. AIAA Journal, 2001, 39(12):2233-2241.
[4] WANG G G, SHAN S. Review of metamodeling techniques in support of engineering design optimization[J]. Journal of Mechanical Design, 2007, 129(4):370-380.
[5] GUTMANN H M. A radial basis function method for global optimization[J]. Journal of Global Optimization, 2001, 19:201-227.
[6] SACKS J, WELCH W J, MITCHELL T J, et al. Design and analysis of computer experiments[J]. Statistical Science, 1989, 4(4):409-423.
[7] GUNN S R. Support vector machines for classification and regression[R]. Southampton:University of Southampton, 1998.
[8] RASMUSSEN C E, WILLIAMS C K I. Gaussian processes for machine learning[M]. Massachusetts:The MIT Press, 2006,
[9] JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4):455-492.
[10] LOCATELLI M. Bayesian algorithms for one-dimensional global optimization[J]. Journal of Global Optimization, 1997, 10(1):57-76.
[11] JONES D R. A taxonomy of global optimization methods based on response surface[J]. Journal of Global Optimization, 2001, 21(4):345-383.
[12] SCHONLAU M, WELCH W J. Global versus local search in constrained optimization of computer models[J]. Lecture Notes-Monograph Series, 1998, 34:11-25.
[13] SASENA M J. Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations[D]. Michigan:University of Michigan, 2002.
[14] LIU J, HAN Z H, SONG W P. Comparison of infill sampling criteria in Kriging-based aerodynamic optimization[C]//28th International Congress of the Aeronautical Sciences, 2012.
[15] 韩忠华. Kriging模型及代理优化算法研究新进展[J]. 航空学报,2016, 37(11):3197-3225. HAN Z H. Kriging surrogate model and its application to design optimization:A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese).
[16] SOBESTER A, LEARY S J, KEANE A J. A parallel updating scheme for approximation and optimization high fidelity computer simulations[J]. Structure and Multidisciplinary Optimization, 2004, 27(5):371-383.
[17] GINSBOURGER D, LE RICHE R, CARRARO L. A multi-points criterion for deterministic parallel global optimization based on kriging[C]//The International Conference on Nonconvex Programming:Local and Global Approaches, 2007.
[18] GINSBOURGER D, LE RICHE R, CARRARO L. Kriging is well-suited to parallelize optimization[M]//Computational Intelligence in Expensive Optimization Problems, Berlin:Springer, 2010:131-162.
[19] LIU J, SONG W P, HAN Z H, et al. Efficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate models[J]. Structural & Multidisciplinary Optimization, 2017, 55(3):1-19.
[20] 张德虎, 高正红, 李焦赞, 等. 代理模型选样准则研究[J]. 空气动力学学报, 2011, 29(6):719-725. ZHANG D H, GAO Z H, LI J Z, et al. Study of metamodel sampling criterion[J]. Acta Aerodynamica Sinica, 2011, 29(6):719-725(in Chinese).
[21] ZHANG Y, HAN Z H, SHI L X, et al. Multi-round surrogate-based optimization for benchmark aerodynamic design problems:AIAA-2016-1545[R]. Reston, VA:AIAA, 2016.
[22] NADARAJAH S. Aerodynamic design optimization:Drag minimization of the NACA0012 in transonic inviscid and the RAE2822 in transonic viscous flow[EB/OL].[2017-09-15]. https://info.aiaa.org/tac/ASG/APATC/AeroDesignOpt-DG/Test.
[23] SACKS J, WELCH W J, MITCHELL T J, et al. Design and analysis of computer experiments[J]. Statistical Science, 1989, 4(4):409-423.
[24] JEONG S, MURAYAMA M, YAMAMOTO K. Efficient optimization design method using Kriging model[J]. Journal of Aircraft, 2005, 42(2):413-420.
[25] KUMANO T, JEONG S, OBAYASHI S, et al. Multidisciplinary design optimization of wing shape for a small jet aircraft using kriging model:AIAA-2006-0932[R]. Reston, VA:AIAA, 2006.
[26] KANAZAKI M, IMAMURA T, JEONG S, et al. High-lift wing design in consideration of sweep angle effect using kriging mode:AIAA-2008-0175[R]. Reston, VA:AIAA, 2008.
[27] 邓枫. EGO全局优化算法及应用研究[D]. 南京:南京航空航天大学, 2011. DENG F. Research on EGO global optimization method and application[D]. Nanjing:Nanjing University of Aeronautics & Astronautics, 2011(in Chinese).
[28] MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 1979, 2(2):239-245.
[29] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks. Piscataway, NJ:IEEE Press, 1995.
[30] KULFAN B M, BUSSOLETTI J E. Fundamental parametric geometry representations for aircraft component shapes:AIAA-2006-6948[R]. Reston, VA:AIAA, 2006.
[31] CARRIER G, DESTARAC D, DUMONT A, et al. Gradient-based aerodynamic optimization with the elsA software:AIAA-2014-0568[R]. Reston, VA:AIAA, 2014.
[32] BISSON F, NADARAJAH S, SHI-DONG D. Adjoint-based aerodynamic optimization of benchmark problems:AIAA-2014-0412[R]. Reston, VA:AIAA, 2014.
[33] LEE C, KOO D, TELIDETZKI K, et al. Aerodynamic shape optimization of benchmark problems using jetstream:AIAA-2015-0262[R]. Reston, VA:AIAA, 2015.
[34] POOLE D J, ALLEN C B, RENDALL T C S. Control point-based aerodynamic shape optimization applied to AIAA ADODG test cases:AIAA-2015-1947[R]. Reston, VA:AIAA, 2015.
[35] ANDERSON G R, AFTOSMIS M J, NEMEC M. Aerodynamic shape optimization benchmarks with error control and automatic parameterization:AIAA-2015-1719[R]. Reston, VA:AIAA, 2015.
[36] VASSBERG J C, HARRISON N A, ROMAN D L, et al. A systematic study on the impact of dimensionality for a two-dimensional aerodynamic optimization model problem:AIAA-2011-3176[R]. Reston, VA:AIAA, 2011.
Outlines

/