Review

An overview of HiLiftPW-1 to HiLiftPW-3 numerical simulation technologies

  • WANG Yuntao
Expand
  • Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2018-01-08

  Revised date: 2018-03-01

  Online published: 2018-07-27

Supported by

National Key Research and Development Program (2016YFB0200700)

Abstract

Following the success of Drag Prediction Workshop (DPW) series, AIAA has organized three rounds of High Lift Prediction Workshop (HiLiftPW), especially for typical commercial transport aircraft. The main objectives of the workshops are to assess the numerical prediction capability of current generation CFD technology for high lift configuration, advance the understanding of high lift complicated flow physics, and identify the areas needing additional research. This paper outlines the basic information and main conclusions from HiLiftPW-1 to HiLiftPW-3, introduces the high lift reference models and related wind tunnel tests. The progress in the fields of CFD verification and validation is summarized, including grid generation, numerical method and turbulent model, and comparison between numerical results and experimental data. At last, provides some thoughts and suggestions on CFD verification and validation.

Cite this article

WANG Yuntao . An overview of HiLiftPW-1 to HiLiftPW-3 numerical simulation technologies[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(7) : 21997 -021997 . DOI: 10.7527/S1000-6893.2018.21997

References

[1] SLOTNICK J P, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR-2014-218178[R]. Washington, D.C.:NASA, 2014.
[2] TINOCO E N, BOGUE D R, KAO T J, et al. Progress toward CFD for full flight envelope[J]. The Aeronautical Journal, 2005, 109:451-460.
[3] RUMSEY C L, YING S X. Prediction of high lift:Review of present CFD capability[J]. Progress in Aerospace Sciences, 2002, 38:145-180.
[4] 朱自强, 陈迎春, 吴宗成. 高升力系统外形的数值模拟计算[J]. 航空学报, 2005, 26(3):257-262. ZHU Z Q, CHEN Y C, WU Z C. Numerical simulation of high lift system configuration[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(3):257-262(in Chinese).
[5] LEVY D W, VASSBERG J C, WAHLS R A, et al. Summary of data from the First AIAA CFD Drag Prediction Workshop[J]. Journal of Aircraft, 2003, 40(5):875-882.
[6] LAFLIN K R, VASSBERG J C, WAHLS R A, et al. Summary of data from the Second AIAA CFD Drag Prediction Workshop[J]. Journal of Aircraft, 2005, 42(5):1165-1178.
[7] VASSBERG J C, TINOCO E N, MANI M, et al. Abridged summary of the Third AIAA CFD Drag Prediction Workshop[J]. Journal of Aircraft, 2008, 45(3):781-798.
[8] VASSBERG J C, TINOCO E N, MANI M, et al. Summary of the Fourth AIAA Computational Fluid Dynamics Drag Prediction Workshop[J]. Journal of Aircraft, 2014, 51(4):1070-1089.
[9] LEVY D W, LAFLIN K R, TINOCO E N, et al. Summary of data from the Fifth Computational Fluid Dynamics Drag Prediction Workshop[J]. Journal of Aircraft, 2014, 51(4):1194-1213.
[10] TINOCO E N, BRODERSEN O, KEYE S, et al. Summary of data from the Sixth AIAA CFD Drag Prediction Workshop:CRM case2 to 5:AIAA-2017-1208[R]. Reston, VA:AIAA, 2017.
[11] SLOTNICK J P, HANNON J A, CHAFFIN M. Overviewof the First AIAA CFD High Lift Prediction Workshop:AIAA-2011-0862[R]. Reston, VA:AIAA, 2011.
[12] RUMSEY C L, LONG M, STUEVER R A. Summary of the First AIAA CFD High Lift Prediction Workshop:AIAA-2011-0939[R]. Reston, VA:AIAA, 2011.
[13] RUMSEY C L, SLOTNICK J P. Overview and summary of the Second AIAA High Lift Prediction Workshop:AIAA-2014-0747[R]. Reston, VA:AIAA, 2014.
[14] AIAA. 3rd AIAA CFD Hligh Lift Prediction Workshop (HiLiftPW-3)[EB/OL]. (2017-06-04)[2018-01-08]. http://hiliftpw.larc.nasa.gov.
[15] GARNER P L, MEREDITH P T, STONER R C. Areas for future CFD development as illustrated by transport aircraft applications:AIAA-1991-1527[R]. Reston, VA:AIAA, 1991.
[16] JOHNSON P L, JONES K M, MADSON M D. Experimental investigation of a simplified 3D high lift configuration in support of CFD validation:AIAA-2000-4217[R]. Reston, VA:AIAA, 2000.
[17] ROGERS S E, ROTH K, NASH S M. Validation of computed high-lift flows with significant wind-tunnel effect[J]. AIAA Journal, 2001, 39(10):1884-1892.
[18] HANSEN H, THIEDE P, RUDNIK R, et al. Overview about the European High Lift Research Program EUROLIFT:AIAA-2004-0767[R]. Reston, VA:AIAA, 2004.
[19] RUDNIK R, HUBER K, MELBER-WILKENDING S. EUROLIFT test case description for the 2nd High Lift Prediction Workshop:AIAA-2012-2924[R]. Reston, VA:AIAA, 2012.
[20] RUDNIK R. Experimental analysis of separation and transition phenomena for the DLR-F11 high lift configuration:AIAA-2013-3035[R]. Reston, VA:AIAA, 2013.
[21] LACY D S, SCLAFANI A J. Development of the high lift common research model (HL-CRM):A representative high lift configuration for transonic transports:AIAA-2016-0308[R]. Reston, VA:AIAA, 2016.
[22] YOKOKAWA Y, MURAYAMA M, ITO T. Experiment and CFD of a high-lift configuration civil transport aircraft model:AIAA-2006-3452[R]. Reston, VA:AIAA, 2006.
[23] ITO T, URA H, YOKOKAWA Y, et al. High-lift device testing in JAXA 6.5 m×5.5 m low-speed wind tunnel:AIAA-2006-3643[R]. Reston, VA:AIAA, 2006.
[24] URA H, YOKOKAWA Y, ITO T. Phased array measurement of high lift devices in low speed wind tunnel:AIAA-2006-2565[R]. Reston, VA:AIAA, 2006.
[25] YOKOKAWA Y, MURAYAMA M, KANAZAKI M. Investigation and improvement of high-Lift aerodynamic performances in lowspeed wind tunnel testing:AIAA-2008-0350[R]. Reston, VA:AIAA, 2008.
[26] PULLIAM T H, SCLAFANI A J. High-lift overflow analysis of the DLR-F11 wind tunnel model:AIAA-2014-2697[R]. Reston, VA:AIAA, 2014.
[27] 谭伟伟. 网格自适应策略在高升力构型计算中的应用[J]. 航空计算技术, 2010, 40(6):38-42. TAN W W. Application of new grid adaptation strategy on high lift configuration[J]. Aeronautical Computing Technique, 2010, 40(6):38-42(in Chinese).
[28] 赵轲, 高正红, 黄江涛, 等. 基于分区拼接网格技术高升力装置流场数值模拟[J]. 应用力学学报, 2012, 29(1):70-75. ZHAO K, GAO Z H, HUANG J T, et al. Numerical simulation of flow around high-lift device based on zonal patched-grid technology[J]. Chinese Journal of Applied Mechanics, 2012, 29(1):70-75(in Chinese).
[29] 李萍, 李根国, 张小柯, 等. NASA高升力TrapWing全展模型的数值模拟[J]. 力学季刊, 2012, 33(2):249-255. LI P, LI G G, ZHANG X K, et al. Numerical simulationof NASA high lift trapwing fullspan model[J]. Chinese Quarterly of Mechanics, 2012, 33(2):249-255(in Chinese).
[30] 洪俊武, 王运涛, 庞宇飞, 等. 结构网格方法对高升力构型的应用研究[J]. 空气动力学学报, 2013, 31(1):75-81. HONG J W, WANG Y T, PANG Y F, et al. Numerical research of high-lift configurations by structured mesh method[J]. Acta Aerodynamica Sinica, 2013, 31(1):75-81(in Chinese).
[31] 颜洪, 麻蓉, 聂智军, 等. 高升力标模确认计算研究[J]. 航空计算技术, 2014, 44(1):34-44. YAN H, MA R, NIE Z J, et al. CFD validation for a high-lift model[J]. Aeronautical Computing Technique, 2014, 44(1):34-44(in Chinese).
[32] 高飞飞, 颜洪, 芦彩香. NASA TrapWing高升力标模数值模拟研究[J]. 航空计算技术, 2015, 45(1):84-90. GAO F F, YAN H, LU C X. Numerical simulation research of NASA TrapWing model[J]. Aeronautical Computing Technique, 2015, 45(1):84-90(in Chinese).
[33] 王运涛, 李松, 孟德虹, 等. 不同襟翼偏角梯形翼构型气动特性数值模拟[J]. 航空学报, 2015, 36(6):1823-1829. WANG Y T, LI S, MENG D H, et al. Numerical simulation of the aerodynamic characteristics of the trapezoidal wing configuration with different flap angles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1823-1829(in Chinese).
[34] 赵钟, 赫新, 张来平, 等. HyperFLOW软件数值模拟TrapWing高升力外形[J]. 空气动力学学报, 2015, 33(5):594-602. ZHAO Z, HE X, ZHANG L P, et al. Numerical research of NASA high-lift trap wing model based on HyperFLOW[J]. Acta Aerodynamica Sinica, 2015, 33(5):594-602(in Chinese).
[35] CHEN J T, ZHANG Y B, ZHOU N C, et al. Numerical investigations of the high-lift configuration with MFlow solver[J]. Journal of Aircraft, 2015, 52(4):1051-1062.
[36] HE X, ZHAO Z, MA R, et al. Validation of HyperFLOW in subsonic and transonic flow[J]. Acta Aerodynamica Sinica, 2016, 34(2):267-275.
[37] DENG X G, ZHANG H X. Developing high-order werghted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165:24-44.
[38] DENG X G, MIN R B, MAO M L, et al. Further studies on geometric conservation law and application to high-order finite difference scheme with stationary grid[J]. Journal of Computational Physics, 2013, 239:90-111.
[39] 王运涛, 孟德虹, 邓小刚. 多段翼型高精度数值模拟技术研究[J]. 空气动力学学报, 2013, 31(1):88-93. WANG Y T, MENG D H, DENG X G. High-order numerical study of complex flow over multi-element airfoil[J]. Acta Aerodynamica Sinica, 2013, 31(1):88-93(in Chinese).
[40] 李松, 王光学, 王运涛, 等. WCNS格式在梯形翼高升力构型模拟中的应用研究[J]. 空气动力学学报, 2014, 32(4):439-445. LI S, WANG G X, WANG Y T, et al. Numerical simulation of high lift trapezoidal wing configuration with WCNS-E-5 scheme[J]. Acta Aerodynamica Sinica, 2014, 32(4):439-445(in Chinese).
[41] 李松. 高阶精度WCNS格式在低速流动中的应用研究[D]. 绵阳:中国空气动力研究与发展中心, 2015. LI S. Applications of high-order accurate weighted compace nonlinear schemes to complicated low-speed flows[D]. Mianyang:China Aerodynamics Research and Development Center, 2015(in Chinese).
[42] 王光学, 张玉伦, 王运涛, 等. BLU_SGS方法在WCNS高阶精度格式上的数值分析[J]. 空气动力学学报, 2015, 33(6):733-739. WANG G X, ZHANG Y L, WANG Y T, et al. Numerical analysis of BLU_SGS method in WCNS high-order scheme[J]. Acta Aerodynamica Sinica, 2015, 33(6):733-739(in Chinese).
[43] 王运涛, 孙岩, 李松, 等. 高阶精度方法下的湍流生成项对低速流动数值模拟的影响研究[J]. 空气动力学学报, 2015, 33(3):325-329. WANG Y T, SUN Y, LI S, et al. Numerical analysis of the effect of turbulent production terms in low-speed numerical simulation[J]. Acta Aerodynamica Sinica, 2015, 33(3):325-329(in Chinese).
[44] NAKAYAMA A. Characteristics of the flow around conventional and supercritical airfoils[J]. Journal of Fluid Mechnics, 1985, 160:155-179.
[45] SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows:AIAA-1992-0439[R]. Reston, VA:AIAA, 1992.
[46] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8):1598-1605.
[47] 王运涛, 洪俊武, 孟德虹. 湍流模型对梯形翼高升力构型的影响[J]. 空气动力学学报, 2013, 31(1):52-55. WANG Y T, HONG J W, MENG D H. The influence ofturbulent models to trap wing simulation[J]. Acta Aerodynamica Sinica, 2013, 31(1):52-55(in Chinese).
[48] ESCOBAR J A, SUAREZ C A, SILVA C, et al. Detached eddy simulation of the DLR-F11 wing/body configuration as a contribution to the 2nd AIAA CFD High Lift Prediction Workshop:AIAA-2014-2398[R]. Reston, VA:AIAA, 2014.
[49] MENTER F R, LANGTRY R B. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906.
[50] LANGTRY R B. A correlation-based transition model using local variables for unstructured parallelized CFD codes[D]. Stuttgart:University of Stuttgart, 2006.
[51] SPALART P R, RUMSEY C L. Effective inflow conditions for turbulence models in aerodynamic calculations[J]. AIAA Journal, 2007, 45(10):2544-2553.
[52] STEED R G F. High lift CFD simulations with an SST-based predictive laminar to turbulent transition model:AIAA-2011-0864[R]. Reston, VA:AIAA, 2011.
[53] SCLAFANI A J, SLOTNICK J P, VASSBERG J C, et al. Extended OVERFLOW analysis of the NASA trap wing wind tunnel model:AIAA-2012-2929[R]. Reston, VA:AIAA, 2012.
[54] WANG Y T, ZHANG Y L, MENG D H, et al. Calibration of a γ-Reθ transition model and its application in low-speed flows[J]. Science China Physics Mechanics & Astronomy, 2014, 57(12):2357-2360.
[55] 王刚, 刘毅, 王光秋, 等. 采用γ-Reθt模型的转捩流动计算分析[J]. 航空学报, 2014, 35(1):70-79. WANG G, LIU Y, WANG G Q, et al. Transitional flow simulation based on γ-Reθt transition model[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):70-79(in Chinese).
[56] 瞿丽霞, 白文. 转捩对高升力构型数值模拟准度的影响研究[J]. 航空计算技术, 2015, 45(6):18-22. QU L X, BAI W. Transition effect on numerical simulation accuracy of high lift configuration[J]. Aeronautical Computing Technique, 2015, 45(6):18-22(in Chinese).
[57] WANG Y T, ZHANG Y L, LI S, et al. Calibration of a γ-Reθ transition model and its validation with high-order numerical method[J]. Chinese Journal of Aeronautics, 2015, 28(3):704-711.
[58] ELIASSON P, HANIFI A, PENG S. Influence of transitionon high-lift prediction for the NASA trap wing model:AIAA-2011-3009[R]. Reston, VA:AIAA, 2011.
[59] 董军, 唐海龙, 任园军. 基于eN-数据库方法复杂构型飞机转捩预测[J]. 航空计算技术, 2016, 46(5):9-12. DONG J, TANG H L, REN Y J. eN-database transition prediction method and application to transport airplane[J]. Aeronautical Computing Technique, 2016, 46(5):9-12(in Chinese).
[60] CODER J G, MAUGHMER M D. A CFD-compatible transition model using an amplification factor transport equation:AIAA-2013-0253[R]. Reston, VA:AIAA, 2013.
[61] RUMSEY C L, LEE-RAUSCH E M. NASA trapezoidal wing computations including transition and advanced turbulence modeling:AIAA-2012-2843[R]. Reston, VA:AIAA, 2012.
[62] 王运涛, 李伟, 李松, 等. 梯形翼风洞试验模型数值模拟技术研究[J]. 航空学报, 2016, 37(4):1159-1165. WANG Y T, LI W, LI S, et al. Numerical simulation of the trapezoidal wing wind tunnel model[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1159-1165(in Chinese).
[63] AIAA. 2nd AIAA CFD High Lift Prediction Workshop (HiLiftPW-2)[EB/OL]. (2013-06-03)[2018-01-08].http://hiliftpw.larc.nasa.gov/index-workshop2.html.
[64] 王运涛, 李松, 孟德虹, 等. 梯形翼高升力构型的数值模拟技术[J]. 航空学报, 2014, 35(12):3213-3221. WANG Y T, LI S, MENG D H, et al. Numerical simulation technology of high lift trapezoidal wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12):3213-3221(in Chinese).
[65] ELIASSON P, HANIFI A, PENG S H. Influence of transition on high-lift prediction for the NASA trap wing model:AIAA-2011-3009[R]. Reston, VA:AIAA, 2011.
[66] JOHNSON P L, JONES K M, MADSON M D. Experimental investigation of a simplified 3D high lift configuration of civil transport aircraft:AIAA-2008-0410[R]. Reston, VA:AIAA, 2008.
[67] MORRISON J H. Statistical analysis of CFD solutions from the Fourth AIAA Drag Prediction Workshop:AIAA-2010-4673[R]. Reston, VA:AIAA, 2010.
[68] RUDNIK R, MELBER-WILKENDING S. DLR contribution to the 2nd High Lift Prediction Workshop:AIAA-2014-0915[R]. Reston, VA:AIAA, 2014.
[69] GOPALAKRISHNA N, BALAKRISHNAN N, RAVINDRA K, et al. High liftflow computations using the code HiFUN:AIAA-2014-2569[R]. Reston, VA:AIAA, 2014.
[70] SEYFERT C, KRUMBEIN A. Correlation-based transition transport modeling for three-dimensional aerodynamic configuration:AIAA-2012-0448[R]. Reston, VA:AIAA, 2012.
[71] MEDIDA S, BAEDER J D. A new crossflow transition onset criterion for RANS turbulence model:AIAA-2013-3081[R]. Reston, VA:AIAA, 2013.
[72] CHOI J H, KWON O J. Enhancement of a correlation-based transition turbulence model for simulating crossflow instability:AIAA-2014-1133[R]. Reston, VA:AIAA, 2014.
[73] 徐家宽, 白俊强, 乔磊, 等. 横流不稳定性转捩预测模型[J]. 航空学报, 2015, 36(6):1814-1822. XU J K, BAI J Q, QIAO L, et al. Transition model for predicting crossflow instabilities[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1814-1822(in Chinese).
[74] 史亚云, 白俊强, 华俊, 等. 基于当地变量的横流转捩预测模型的研究与改进[J]. 航空学报, 2016, 37(3):780-789. SHI Y Y, BAI J Q, HUA J, et al. Study and modification of cross-flow induced transition model based on local variables[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):780-789(in Chinese).
[75] LOPEZ O, OCHOA N, MAHECHA J, et al. Numerical simulation of NASA Trap-Wing model as a colombian contribution to the high-lift prediction workshop:AIAA-2012-2921[R]. Reston, VA:AIAA, 2012.
[76] OBERKAMPF W L, TRUCANOB T G. Verification and validation in computational fluid dynamics[J]. Progress in Aerospace Sciences, 2002, 38:209-272.
Outlines

/