[1] SLOTNICK J P, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR-2014-218178[R]. Washington, D.C.:NASA, 2014.
[2] TINOCO E N, BOGUE D R, KAO T J, et al. Progress toward CFD for full flight envelope[J]. The Aeronautical Journal, 2005, 109:451-460.
[3] RUMSEY C L, YING S X. Prediction of high lift:Review of present CFD capability[J]. Progress in Aerospace Sciences, 2002, 38:145-180.
[4] 朱自强, 陈迎春, 吴宗成. 高升力系统外形的数值模拟计算[J]. 航空学报, 2005, 26(3):257-262. ZHU Z Q, CHEN Y C, WU Z C. Numerical simulation of high lift system configuration[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(3):257-262(in Chinese).
[5] LEVY D W, VASSBERG J C, WAHLS R A, et al. Summary of data from the First AIAA CFD Drag Prediction Workshop[J]. Journal of Aircraft, 2003, 40(5):875-882.
[6] LAFLIN K R, VASSBERG J C, WAHLS R A, et al. Summary of data from the Second AIAA CFD Drag Prediction Workshop[J]. Journal of Aircraft, 2005, 42(5):1165-1178.
[7] VASSBERG J C, TINOCO E N, MANI M, et al. Abridged summary of the Third AIAA CFD Drag Prediction Workshop[J]. Journal of Aircraft, 2008, 45(3):781-798.
[8] VASSBERG J C, TINOCO E N, MANI M, et al. Summary of the Fourth AIAA Computational Fluid Dynamics Drag Prediction Workshop[J]. Journal of Aircraft, 2014, 51(4):1070-1089.
[9] LEVY D W, LAFLIN K R, TINOCO E N, et al. Summary of data from the Fifth Computational Fluid Dynamics Drag Prediction Workshop[J]. Journal of Aircraft, 2014, 51(4):1194-1213.
[10] TINOCO E N, BRODERSEN O, KEYE S, et al. Summary of data from the Sixth AIAA CFD Drag Prediction Workshop:CRM case2 to 5:AIAA-2017-1208[R]. Reston, VA:AIAA, 2017.
[11] SLOTNICK J P, HANNON J A, CHAFFIN M. Overviewof the First AIAA CFD High Lift Prediction Workshop:AIAA-2011-0862[R]. Reston, VA:AIAA, 2011.
[12] RUMSEY C L, LONG M, STUEVER R A. Summary of the First AIAA CFD High Lift Prediction Workshop:AIAA-2011-0939[R]. Reston, VA:AIAA, 2011.
[13] RUMSEY C L, SLOTNICK J P. Overview and summary of the Second AIAA High Lift Prediction Workshop:AIAA-2014-0747[R]. Reston, VA:AIAA, 2014.
[14] AIAA. 3rd AIAA CFD Hligh Lift Prediction Workshop (HiLiftPW-3)[EB/OL]. (2017-06-04)[2018-01-08]. http://hiliftpw.larc.nasa.gov.
[15] GARNER P L, MEREDITH P T, STONER R C. Areas for future CFD development as illustrated by transport aircraft applications:AIAA-1991-1527[R]. Reston, VA:AIAA, 1991.
[16] JOHNSON P L, JONES K M, MADSON M D. Experimental investigation of a simplified 3D high lift configuration in support of CFD validation:AIAA-2000-4217[R]. Reston, VA:AIAA, 2000.
[17] ROGERS S E, ROTH K, NASH S M. Validation of computed high-lift flows with significant wind-tunnel effect[J]. AIAA Journal, 2001, 39(10):1884-1892.
[18] HANSEN H, THIEDE P, RUDNIK R, et al. Overview about the European High Lift Research Program EUROLIFT:AIAA-2004-0767[R]. Reston, VA:AIAA, 2004.
[19] RUDNIK R, HUBER K, MELBER-WILKENDING S. EUROLIFT test case description for the 2nd High Lift Prediction Workshop:AIAA-2012-2924[R]. Reston, VA:AIAA, 2012.
[20] RUDNIK R. Experimental analysis of separation and transition phenomena for the DLR-F11 high lift configuration:AIAA-2013-3035[R]. Reston, VA:AIAA, 2013.
[21] LACY D S, SCLAFANI A J. Development of the high lift common research model (HL-CRM):A representative high lift configuration for transonic transports:AIAA-2016-0308[R]. Reston, VA:AIAA, 2016.
[22] YOKOKAWA Y, MURAYAMA M, ITO T. Experiment and CFD of a high-lift configuration civil transport aircraft model:AIAA-2006-3452[R]. Reston, VA:AIAA, 2006.
[23] ITO T, URA H, YOKOKAWA Y, et al. High-lift device testing in JAXA 6.5 m×5.5 m low-speed wind tunnel:AIAA-2006-3643[R]. Reston, VA:AIAA, 2006.
[24] URA H, YOKOKAWA Y, ITO T. Phased array measurement of high lift devices in low speed wind tunnel:AIAA-2006-2565[R]. Reston, VA:AIAA, 2006.
[25] YOKOKAWA Y, MURAYAMA M, KANAZAKI M. Investigation and improvement of high-Lift aerodynamic performances in lowspeed wind tunnel testing:AIAA-2008-0350[R]. Reston, VA:AIAA, 2008.
[26] PULLIAM T H, SCLAFANI A J. High-lift overflow analysis of the DLR-F11 wind tunnel model:AIAA-2014-2697[R]. Reston, VA:AIAA, 2014.
[27] 谭伟伟. 网格自适应策略在高升力构型计算中的应用[J]. 航空计算技术, 2010, 40(6):38-42. TAN W W. Application of new grid adaptation strategy on high lift configuration[J]. Aeronautical Computing Technique, 2010, 40(6):38-42(in Chinese).
[28] 赵轲, 高正红, 黄江涛, 等. 基于分区拼接网格技术高升力装置流场数值模拟[J]. 应用力学学报, 2012, 29(1):70-75. ZHAO K, GAO Z H, HUANG J T, et al. Numerical simulation of flow around high-lift device based on zonal patched-grid technology[J]. Chinese Journal of Applied Mechanics, 2012, 29(1):70-75(in Chinese).
[29] 李萍, 李根国, 张小柯, 等. NASA高升力TrapWing全展模型的数值模拟[J]. 力学季刊, 2012, 33(2):249-255. LI P, LI G G, ZHANG X K, et al. Numerical simulationof NASA high lift trapwing fullspan model[J]. Chinese Quarterly of Mechanics, 2012, 33(2):249-255(in Chinese).
[30] 洪俊武, 王运涛, 庞宇飞, 等. 结构网格方法对高升力构型的应用研究[J]. 空气动力学学报, 2013, 31(1):75-81. HONG J W, WANG Y T, PANG Y F, et al. Numerical research of high-lift configurations by structured mesh method[J]. Acta Aerodynamica Sinica, 2013, 31(1):75-81(in Chinese).
[31] 颜洪, 麻蓉, 聂智军, 等. 高升力标模确认计算研究[J]. 航空计算技术, 2014, 44(1):34-44. YAN H, MA R, NIE Z J, et al. CFD validation for a high-lift model[J]. Aeronautical Computing Technique, 2014, 44(1):34-44(in Chinese).
[32] 高飞飞, 颜洪, 芦彩香. NASA TrapWing高升力标模数值模拟研究[J]. 航空计算技术, 2015, 45(1):84-90. GAO F F, YAN H, LU C X. Numerical simulation research of NASA TrapWing model[J]. Aeronautical Computing Technique, 2015, 45(1):84-90(in Chinese).
[33] 王运涛, 李松, 孟德虹, 等. 不同襟翼偏角梯形翼构型气动特性数值模拟[J]. 航空学报, 2015, 36(6):1823-1829. WANG Y T, LI S, MENG D H, et al. Numerical simulation of the aerodynamic characteristics of the trapezoidal wing configuration with different flap angles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1823-1829(in Chinese).
[34] 赵钟, 赫新, 张来平, 等. HyperFLOW软件数值模拟TrapWing高升力外形[J]. 空气动力学学报, 2015, 33(5):594-602. ZHAO Z, HE X, ZHANG L P, et al. Numerical research of NASA high-lift trap wing model based on HyperFLOW[J]. Acta Aerodynamica Sinica, 2015, 33(5):594-602(in Chinese).
[35] CHEN J T, ZHANG Y B, ZHOU N C, et al. Numerical investigations of the high-lift configuration with MFlow solver[J]. Journal of Aircraft, 2015, 52(4):1051-1062.
[36] HE X, ZHAO Z, MA R, et al. Validation of HyperFLOW in subsonic and transonic flow[J]. Acta Aerodynamica Sinica, 2016, 34(2):267-275.
[37] DENG X G, ZHANG H X. Developing high-order werghted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165:24-44.
[38] DENG X G, MIN R B, MAO M L, et al. Further studies on geometric conservation law and application to high-order finite difference scheme with stationary grid[J]. Journal of Computational Physics, 2013, 239:90-111.
[39] 王运涛, 孟德虹, 邓小刚. 多段翼型高精度数值模拟技术研究[J]. 空气动力学学报, 2013, 31(1):88-93. WANG Y T, MENG D H, DENG X G. High-order numerical study of complex flow over multi-element airfoil[J]. Acta Aerodynamica Sinica, 2013, 31(1):88-93(in Chinese).
[40] 李松, 王光学, 王运涛, 等. WCNS格式在梯形翼高升力构型模拟中的应用研究[J]. 空气动力学学报, 2014, 32(4):439-445. LI S, WANG G X, WANG Y T, et al. Numerical simulation of high lift trapezoidal wing configuration with WCNS-E-5 scheme[J]. Acta Aerodynamica Sinica, 2014, 32(4):439-445(in Chinese).
[41] 李松. 高阶精度WCNS格式在低速流动中的应用研究[D]. 绵阳:中国空气动力研究与发展中心, 2015. LI S. Applications of high-order accurate weighted compace nonlinear schemes to complicated low-speed flows[D]. Mianyang:China Aerodynamics Research and Development Center, 2015(in Chinese).
[42] 王光学, 张玉伦, 王运涛, 等. BLU_SGS方法在WCNS高阶精度格式上的数值分析[J]. 空气动力学学报, 2015, 33(6):733-739. WANG G X, ZHANG Y L, WANG Y T, et al. Numerical analysis of BLU_SGS method in WCNS high-order scheme[J]. Acta Aerodynamica Sinica, 2015, 33(6):733-739(in Chinese).
[43] 王运涛, 孙岩, 李松, 等. 高阶精度方法下的湍流生成项对低速流动数值模拟的影响研究[J]. 空气动力学学报, 2015, 33(3):325-329. WANG Y T, SUN Y, LI S, et al. Numerical analysis of the effect of turbulent production terms in low-speed numerical simulation[J]. Acta Aerodynamica Sinica, 2015, 33(3):325-329(in Chinese).
[44] NAKAYAMA A. Characteristics of the flow around conventional and supercritical airfoils[J]. Journal of Fluid Mechnics, 1985, 160:155-179.
[45] SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows:AIAA-1992-0439[R]. Reston, VA:AIAA, 1992.
[46] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8):1598-1605.
[47] 王运涛, 洪俊武, 孟德虹. 湍流模型对梯形翼高升力构型的影响[J]. 空气动力学学报, 2013, 31(1):52-55. WANG Y T, HONG J W, MENG D H. The influence ofturbulent models to trap wing simulation[J]. Acta Aerodynamica Sinica, 2013, 31(1):52-55(in Chinese).
[48] ESCOBAR J A, SUAREZ C A, SILVA C, et al. Detached eddy simulation of the DLR-F11 wing/body configuration as a contribution to the 2nd AIAA CFD High Lift Prediction Workshop:AIAA-2014-2398[R]. Reston, VA:AIAA, 2014.
[49] MENTER F R, LANGTRY R B. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906.
[50] LANGTRY R B. A correlation-based transition model using local variables for unstructured parallelized CFD codes[D]. Stuttgart:University of Stuttgart, 2006.
[51] SPALART P R, RUMSEY C L. Effective inflow conditions for turbulence models in aerodynamic calculations[J]. AIAA Journal, 2007, 45(10):2544-2553.
[52] STEED R G F. High lift CFD simulations with an SST-based predictive laminar to turbulent transition model:AIAA-2011-0864[R]. Reston, VA:AIAA, 2011.
[53] SCLAFANI A J, SLOTNICK J P, VASSBERG J C, et al. Extended OVERFLOW analysis of the NASA trap wing wind tunnel model:AIAA-2012-2929[R]. Reston, VA:AIAA, 2012.
[54] WANG Y T, ZHANG Y L, MENG D H, et al. Calibration of a γ-Reθ transition model and its application in low-speed flows[J]. Science China Physics Mechanics & Astronomy, 2014, 57(12):2357-2360.
[55] 王刚, 刘毅, 王光秋, 等. 采用γ-Reθt模型的转捩流动计算分析[J]. 航空学报, 2014, 35(1):70-79. WANG G, LIU Y, WANG G Q, et al. Transitional flow simulation based on γ-Reθt transition model[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):70-79(in Chinese).
[56] 瞿丽霞, 白文. 转捩对高升力构型数值模拟准度的影响研究[J]. 航空计算技术, 2015, 45(6):18-22. QU L X, BAI W. Transition effect on numerical simulation accuracy of high lift configuration[J]. Aeronautical Computing Technique, 2015, 45(6):18-22(in Chinese).
[57] WANG Y T, ZHANG Y L, LI S, et al. Calibration of a γ-Reθ transition model and its validation with high-order numerical method[J]. Chinese Journal of Aeronautics, 2015, 28(3):704-711.
[58] ELIASSON P, HANIFI A, PENG S. Influence of transitionon high-lift prediction for the NASA trap wing model:AIAA-2011-3009[R]. Reston, VA:AIAA, 2011.
[59] 董军, 唐海龙, 任园军. 基于eN-数据库方法复杂构型飞机转捩预测[J]. 航空计算技术, 2016, 46(5):9-12. DONG J, TANG H L, REN Y J. eN-database transition prediction method and application to transport airplane[J]. Aeronautical Computing Technique, 2016, 46(5):9-12(in Chinese).
[60] CODER J G, MAUGHMER M D. A CFD-compatible transition model using an amplification factor transport equation:AIAA-2013-0253[R]. Reston, VA:AIAA, 2013.
[61] RUMSEY C L, LEE-RAUSCH E M. NASA trapezoidal wing computations including transition and advanced turbulence modeling:AIAA-2012-2843[R]. Reston, VA:AIAA, 2012.
[62] 王运涛, 李伟, 李松, 等. 梯形翼风洞试验模型数值模拟技术研究[J]. 航空学报, 2016, 37(4):1159-1165. WANG Y T, LI W, LI S, et al. Numerical simulation of the trapezoidal wing wind tunnel model[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1159-1165(in Chinese).
[63] AIAA. 2nd AIAA CFD High Lift Prediction Workshop (HiLiftPW-2)[EB/OL]. (2013-06-03)[2018-01-08].http://hiliftpw.larc.nasa.gov/index-workshop2.html.
[64] 王运涛, 李松, 孟德虹, 等. 梯形翼高升力构型的数值模拟技术[J]. 航空学报, 2014, 35(12):3213-3221. WANG Y T, LI S, MENG D H, et al. Numerical simulation technology of high lift trapezoidal wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12):3213-3221(in Chinese).
[65] ELIASSON P, HANIFI A, PENG S H. Influence of transition on high-lift prediction for the NASA trap wing model:AIAA-2011-3009[R]. Reston, VA:AIAA, 2011.
[66] JOHNSON P L, JONES K M, MADSON M D. Experimental investigation of a simplified 3D high lift configuration of civil transport aircraft:AIAA-2008-0410[R]. Reston, VA:AIAA, 2008.
[67] MORRISON J H. Statistical analysis of CFD solutions from the Fourth AIAA Drag Prediction Workshop:AIAA-2010-4673[R]. Reston, VA:AIAA, 2010.
[68] RUDNIK R, MELBER-WILKENDING S. DLR contribution to the 2nd High Lift Prediction Workshop:AIAA-2014-0915[R]. Reston, VA:AIAA, 2014.
[69] GOPALAKRISHNA N, BALAKRISHNAN N, RAVINDRA K, et al. High liftflow computations using the code HiFUN:AIAA-2014-2569[R]. Reston, VA:AIAA, 2014.
[70] SEYFERT C, KRUMBEIN A. Correlation-based transition transport modeling for three-dimensional aerodynamic configuration:AIAA-2012-0448[R]. Reston, VA:AIAA, 2012.
[71] MEDIDA S, BAEDER J D. A new crossflow transition onset criterion for RANS turbulence model:AIAA-2013-3081[R]. Reston, VA:AIAA, 2013.
[72] CHOI J H, KWON O J. Enhancement of a correlation-based transition turbulence model for simulating crossflow instability:AIAA-2014-1133[R]. Reston, VA:AIAA, 2014.
[73] 徐家宽, 白俊强, 乔磊, 等. 横流不稳定性转捩预测模型[J]. 航空学报, 2015, 36(6):1814-1822. XU J K, BAI J Q, QIAO L, et al. Transition model for predicting crossflow instabilities[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1814-1822(in Chinese).
[74] 史亚云, 白俊强, 华俊, 等. 基于当地变量的横流转捩预测模型的研究与改进[J]. 航空学报, 2016, 37(3):780-789. SHI Y Y, BAI J Q, HUA J, et al. Study and modification of cross-flow induced transition model based on local variables[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):780-789(in Chinese).
[75] LOPEZ O, OCHOA N, MAHECHA J, et al. Numerical simulation of NASA Trap-Wing model as a colombian contribution to the high-lift prediction workshop:AIAA-2012-2921[R]. Reston, VA:AIAA, 2012.
[76] OBERKAMPF W L, TRUCANOB T G. Verification and validation in computational fluid dynamics[J]. Progress in Aerospace Sciences, 2002, 38:209-272.