Trajectory tracking is one of the key methods for autonomous aircraft motion control. Tracking Model Predictive Static Programming (T-MPSP) is an efficient non-linear model-based trajectory tracking algorithm. However, the algorithm may also result in unsatisfactory tracking performance in the cases when the aircraft is impaired, and when the utilized aircraft model deviates significantly from the nominal model. An adaptive trajectory tracking algorithm is proposed based on real-time parameter estimation. The algorithm realizes the real-time parameter estimation under the framework of Model Predictive Static Programming (MPSP), providing computationally efficient closed-form solution; and updates the model used in the T-MPSP in real-time, thus effectively ensuring a better guidance accuracy. The proposed algorithm is an extension of the MPSP algorithm, and therefore has a high overall computational efficiency, so it is amenable for online applications. Numerical simulation validates the effectiveness of the proposed algorithm.
WANG Mengmeng
,
ZHANG Shuguang
. Adaptive trajectory tracking algorithm based on tracking model-predictive-static-programming[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018
, 39(9)
: 322105
-322113
.
DOI: 10.7527/S1000-6893.2018.22105
[1] SHAMMA J S, CLOUTIER J R. Gain-scheduled missile autopilot design using linear parameter varying transformations[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(2):256-263.
[2] SHAMMA J S, ATHANS M. Analysis of gain scheduled control for nonlinear plants[J]. IEEE Transactions on Automatic Control, 1990, 35(8):898-907.
[3] KAMINER I, PASCOAL A, HALLBERG E, et al. Trajectory tracking for autonomous vehicles:An integrated approach to guidance and control[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(1):29-38.
[4] BHARADWAJ S, RAO A V, MEASE K D. Entry trajectory tracking law via feedback linearization[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(5):726-732.
[5] ORIOLO G, DE LUCA A, VENDITTELLI M. WMR control via dynamic feedback linearization:Design, implementation, and experimental validation[J]. IEEE Transactions on Control Systems Technology, 2002, 10(6):835-852.
[6] AL-HIDDABI S A, MCCLAMROCH N H. Tracking and maneuver regulation control for nonlinear nonminimum phase systems:Application to flight control[J]. IEEE Transactions on Control Systems Technology, 2002, 10(6):780-792.
[7] AGUIAR A P, HESPANHA J P. Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty[J]. IEEE Transactions on Automatic Control, 2007, 52(8):1362-1379.
[8] 杨立本, 章卫国, 黄得刚. 基于ADRC姿态解耦的四旋翼飞行器鲁棒轨迹跟踪[J]. 北京航空航天大学学报, 2015, 41(6):1026-1033. YANG L B, ZHANG W G, HUANG D G. Robust trajectory tracking for quadrotor aircraft based on ADRC attitude decoupling control[J]. Journal of Beijing University of Aeronautics and Astronsutics, 2015, 41(6):1026-1033(in Chinese).
[9] 吴超, 王浩文, 张玉文, 等. 基于LADRC的无人直升机轨迹跟踪[J]. 航空学报, 2015, 36(2):473-483. WU C, WANG H W, ZHANG Y W, et al. LADRC-based trajectory tracking for unmanned helicopter[J]. Acta Aeronauticaet Astronautica Sinica, 2015, 36(2):473-483(in Chinese).
[10] KANG Y, HEDRICK J K. Design of nonlinear model predictive controller for a small fixed-wing unmanned aerial vehicle[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, VA:AIAA, 2006:1-11.
[11] KANG Y, HEDRICK J K. Linear tracking for a fixed-wing UAV using nonlinear model predictive control[J]. IEEE Transactions on Control Systems Technology, 2009, 17(5):1202-1210.
[12] PADHI R. Model predictive static programming:A promising technique for optimal missile guidance[J]. Annals of the Indian National Academy of Engineering, 2008, 5:185-194.
[13] MAITY A, PADHI R, MALLARAM S, et al. A robust and high precision optimal explicit guidance scheme for solid motor propelled launch vehicles with thrust and drag uncertainty[J]. International Journal of Systems Science, 2016, 47(13):3078-3097.
[14] OZA H B, PADHI R. Impact-angle-constrained suboptimal model predictive static programming guidance of air-to-ground missiles[J]. Journal of Guidance, Control and Dynamics, 2012, 35(1):153-164.
[15] MAITY A, OZA H B, PADHI R. Generalized model predictive static programming and angle-constrained guidance of air-to-ground missiles[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(6):1897-1913.
[16] KUMAR P, PADHI R. Extension of model predictive static programming for reference command tracking[J]. IFAC Proceedings Volumes, 2014, 47(1):855-861.
[17] TRIPATHI A K, PADHI R. Autonomous landing for UAVs using T-MPSP guidance and dynamic inversion autopilot[J]. IFAC-PapersOnLine, 2016, 49(1):18-23.
[18] CAMACHO E F, ALBA C B. Model predictive control[M]. Berlin:Springer Science & Business Media, 2013.
[19] NGUYEN N, KRISHNAKUMAR K, KANESHIGE J, et al. Flight dynamics and hybrid adaptive control of damaged aircraft[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(3):751.
[20] ALLIGIER R, GIANAZZA D, DURAND N. Learning the aircraft mass and thrust to improve the ground-based trajectory prediction of climbing flights[J]. Transportation Research Part C:Emerging Technologies, 2013, 36:45-60.
[21] IMADO F, KURODA T, TAHK M-J. A new missile guidance algorithm against a maneuvering target[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, VA:AIAA, 1998:10-12.