To solve the problem of large overshoot and long adjustment time of dynamic pressure response of a new type Ball-type Rotary Direct Dive Pressure Servo Valve (BRDDPSV), a mathematical model is developed based on the classical control theory. The main structure parameters and electronic control method that affect the stability of BRDDPSV are analyzed. Theoretical analysis shows that the response stability of the BRDDPSV can be improved by properly adjusting the structural parameters, including reducing the spool diameter, and decreasing the negative cover of the valve port or changing the small ball and cylindrical hole into a slight interference fit. With respect to the control method, on the basis of the original PI control, large overshoot of dynamic response can be inhibited through integral separation, and the adjustment time of the dynamic response can be shortened through dynamic pressure feedback correction. Finally, semi-physical simulation experiments show that with proper structural parameters and electrical control methods, the pressure overshoot can be controlled to be less than 0.5 MPa (system pressure was 21 MPa), and the response adjustment time can be controlled within 30 ms theoretically and experimentally. It can meet the requirements of aircraft brake pressure servo valve.
LU Liang
,
XIA Feiyan
,
YIN Yaobao
,
YUAN Jiayang
,
FANG Xiang
. Dynamic analysis and optimization of ball-type rotary direct drive pressure servo valve[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018
, 39(10)
: 422143
-422143
.
DOI: 10.7527/S1000-6893.2018.22143
[1] 訚耀保.极端环境下的电液伺服控制理论及应用技术[M]. 上海:上海科学技术出版社, 2012. YIN Y B.Electro-hydraulic servo control theory and application technology under extreme environment[M].Shanghai:Shanghai Science and Technology Press, 2012(in Chinese).
[2] MASKREY R H, THAYER W J. A brief history of electrohydraulic servomechanisms[J]. Journal of Dynamic Systems, Measurement and Control, 1978:100.
[3] AMARA Y, LUCIDARME J, GABSI M, et al. A new topology of hybrid synchronous machine[M]. 2001.
[4] VANDERLAAN R D, MEULENDYK J W. Direct drive valve-ball drive mechanism:US 4672992A[P]. 1987-06-16.
[5] HAYNES L E, LUCAS L L. Direct drive servo valve:US 4793377A[P]. 1988-12-27.
[6] LAUX K. Motor-to-spool coupling for rotary-to-linear direct drive valve:US 5263680A[P]. 1993-11-23.
[7] URAI T, SUGIYAMA T, NAKAMURA T, et al. Development of a direct-drive servovalve using a giant magnetostrictive material[J]. Transactions of the Japan Society of Mechanical Engineers C, 2011, 59(563):2112-2115.
[8] MOOG Inc. D633D634 series direct drive servo-proportional control valves[M]. New York:Manufacture Catalog, 1988:2-3.
[9] NASCUTIU L. Voice coil actuator for hydraulic servo valves with high transient performances[C]//IEEE International Conference on Automation, Quality and Testing, Robotics, 2006:185-190.
[10] ZHU M Z, ZHAO S D, LI J X. Design and analysis of a new high frequency double-servodirect drive rotary valve[J]. Frontiers of Mechanical Engineering in China, 2016, 11(4):344-350.
[11] ZHANG M, NIE H, WEI X H, et al. Research on modelling and simulation for aircraft anti-skid braking[C]//International Symposium on Systems and Control in Aerospace and Astronautics, 2008:1-5.
[12] YUAN Q, LI P Y. An experimental study on the use of unstable electrohydraulic valves for control[C]//Proceedings of the 2002 American Control Conference, 2002:4843-4848.
[13] YUAN Q, LI P Y. Using steady flow force for unstable valve design:Modeling and experiments[J]. Journal of Dynamic Systems, Measurement, and Control, 2005, 127(3):451-462.
[14] 吴泊宁, 张小洁, 王大智. 引入反馈杆动刚度的电液伺服阀动力稳定性研究[J]. 液压与气动, 2009(3):70-72. WU B N, ZHANG X J, WANG D Z. Research on stability of control system for electro-hydraulic servo valve with dynamic stiffness feedback beam[J]. Hydraulics & Pneumatics, 2009(3):70-72(in Chinese).
[15] 黄澄, 焦宗夏, 尚耀星. 考虑管路的飞机液压刹车系统压力振荡分析[J]. 北京航空航天大学学报, 2014, 40(2):210-215. HUANG C, JIAO Z X, SHANG Y X. Pressure oscillation analysis of aircraft hydraulic braking system considering pipeline[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(2):210-215(in Chinese).
[16] 逯九利, 袁朝辉, 孙静. 一种抑制飞机刹车压力控制系统谐振方法研究[J]. 机床与液压, 2016, 44(13):144-147. LU J L, YUAN C H, SUN J. A method of weakening the resonant of the aircraft brake pressure control system[J]. Machine Tool & Hydraulics, 2016, 44(13):144-147(in Chinese).
[17] 訚耀保, 张鹏, 张阳. 偏转板伺服阀压力特性研究[J]. 流体传动与控制, 2014(4):10-15. YIN Y B, ZHANG P, ZHANG Y. Study on pressure characteristics of deflection plate servo valve[J]. Fluid Power Transmission and Control, 2014(4):10-15(in Chinese).
[18] TSAI S T, AKERS A, LIN S J. Modeling and dynamic evaluation of a two-stage two-spool servovalve used for pressure control[J]. Journal of Dynamic Systems Measurement & Control, 1991, 113(4):709-713.
[19] 姜继海, 黄英玲, 邹小舟, 等. 直接驱动式电液压力伺服阀的特性研究[J]. 液压气动与密封, 2008, 28(6):51-54. JIANG J H, HUANG Y L, ZOU X Z, et al. Research on characteristics of direct drive pressure servo-valve[J]. Hydraulics Pneumatics & Seals, 2008, 28(6):51-54(in Chinese).
[20] 钱占松. 旋转直接驱动电液压力伺服阀的设计研究[J]. 液压与气动, 2015(11):90-94. QIAN Z S. Design and research of rotate direct drive pressure control servo-valve[J]. Hydraulics & Pneumatics, 2015(11):90-94(in Chinese).
[21] 胡科峰, 周云飞, 李作清, 等. 基于积分分离的PID位置控制器的设计[J]. 机床与液压, 2004(5):19-21. HU K F, ZHOU Y F, LI Z Q, et al. Integral separated PID regulator design[J]. Machine Tool & Hydraulics, 2004(5):19-21(in Chinese).