Material Engineering and Mechanical Manufacturing

Peel simulating and test verification of prepreg based on laying process

  • PENG Xiao ,
  • SHU Zhan ,
  • DU Tao ,
  • XU Qiang
Expand
  • State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China

Received date: 2018-04-26

  Revised date: 2018-05-08

  Online published: 2018-05-29

Supported by

National Natural Science Foundation of China Youth Fund (11402228); Fundamental Research Funds for the Central Universities (2018FZA4004)

Abstract

To systematically establish the prepreg peeling model which can characterize the stiffness and tack of the prepreg, a test verification system considering tensile, probe and peeling is constructed. First, the shift cantilever peel device for the prepreg is designed, and the tack and dynamic stiffness of the prepreg with various laying process parameters by the 90° peeling test are measured. A peel simulation model is established. Then, the cohesive zone model is used to quantitatively characterize the tack parameters obtained by the probe test. Next, the orthotropic mechanical parameters of the prepreg are measured by the test, and are input into the peeling model together with the tack parameters obtained from the probe test. Results of simulation of the tack and the stiffness of the prepreg with various process parameters are all in good agreement with the experimental values. The simulation reveals that the phenomenon of off-roller during the peel test will affect the measured value of peeling force; therefore, the phenomenon of off-roller and its mechanism are studied. It was found that the radius of the peel guide roller should be set within 3-7 mm, which can reduce the off-roller degree and improve the accuracy of the peel test. Our research completed systematic determination and characterization of the tack and stiffness of the prepreg, providing some reference for modelling and automatic placement simulation of the prepreg.

Cite this article

PENG Xiao , SHU Zhan , DU Tao , XU Qiang . Peel simulating and test verification of prepreg based on laying process[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(12) : 422246 -422246 . DOI: 10.7527/S1000-6893.2018.22246

References

[1] RUDD C D, LONG A C, KENDALL K N, et al. Resin systems-liquid moulding technologies-3[J]. Liquid Moulding Technologies, 1997, 7(5):65-99.
[2] NEWELL G C, BUCKINGHAM R O, KHODAB-ANDEHLOO K. The automated manufacture of prepreg broadgoods components-a review of literature[J]. Composites Part A:Applied Science & Manufacturing, 1996, 27(3):211-217.
[3] KROLEWSKI S, GUTOWSKI T. Effect of the automation of advanced composite fabrication process on part cost[J]. Cell Biochemistry & Function, 1986, 25(5):591-596.
[4] SPANGE S, MULLER H, JAGER C, et al. Effect of the automation of advanced composite fabrication process on part cost:Krolewski, S. and Gutowski SAMPE Quarterly Vol 18 No 1(October 1986) pp 43-51[J]. Composites, 2002, 19(177):111-124.
[5] MARSH G. Automating aerospace composites production with fibre placement[J]. Reinforced Plastics, 2011, 55(3):32-37.
[6] 张鹏, 孙容磊, 连海涛, 等. 自动铺带铺层贴合形成机制[J]. 复合材料学报, 2014, 31(1):40-48. ZHANG P, SUN R L, LIAN H T, et al. Bonding mechanism of ply during automated tape laying process[J].Acta Materiae Compositae Sinica, 2014, 31(1):40-48(in Chinese).
[7] CROSSLEY R J, SCHUBEL P J, WARRIOR N A. Challenges in automated turbine bladeproduction; Automated tape layup (ATL) of wind energy grade materials[C]//European International Wind Energy Conference, 2010.
[8] 陆楠楠, 肖军, 齐俊伟, 等. 面向自动铺放预浸料动态黏性实验研究[J]. 航空学报, 2014, 35(1):279-286. LU N N, XIAO J, QI J W, et al. Experimental research on prepreg dynamic tack based on automated placement process[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):279-286(in Chinese).
[9] DUBOIS O, CAM J B L, BÉAKOU A. Experimental analysis of prepreg tack[J]. Experimental Mechanics, 2010, 50(5):599-606.
[10] BANKS R, MOURITZ A P, JOHN S, et al. Development of a new structural prepreg:Characterization of handling, drape and tack properties[J]. Composite Structures, 2004, 66(1):169-174.
[11] YOSHINOBU N, KEIGO I, KAZUHIRO Y, et al. Influence of crosslinking and peeling rate on tack properties of polyacrylic pressure-sensitive adhesives[J]. Journal of Adhesion Science & Technology, 2013, 27(17):1951-1965.
[12] TORDJEMAN P, PAPON E, VILLENAVE J J. Tack properties of pressure-sensitive adhesives[J]. Journal of Polymer Science Part B:Polymer Physics, 2010, 38(9):1201-1208.
[13] BENEDEK I, FELDSTEIN M M. Fundamentals of pressure sensitivity[M]. London:CRC Press, 2009:129-155.
[14] AHN K J, SEFERIS J C, PELTON T, et al. Analysis and characterization of prepreg tack[J]. Polymer Composites, 1992, 13(13):197-206.
[15] SEFERIS J C, MEISSONNIER J. Development of a tack and drape test for prepregd based on viscoelastic principles[J]. Sampe Quarterly, 1989, 20(3):55-64.
[16] PUTNAM J W, HAYES B S, SEFERIS J C. Prepreg process-structure-property analysis and scale-up for manufacturing and performance[J]. Journal of Advanced Materials, 1996, 27(4):47-57.
[17] YOSHINOBU N, KEIGO I, KEIKO I, et al. Contact time and temperature dependencies of tack in polyacrylic block copolymer pressure-sensitive adhesives measured by the probe tack test[J]. Journal of Adhesion Science & Technology, 2012, 26(1-3):231-249.
[18] CROSSLEY R J, SCHUBEL P J, WARRIOR N A. The experimental determination of prepreg tack and dynamic stiffness[J]. Composites Part A:Applied Science & Manufacturing, 2012, 43(3):423-434.
[19] GEORGIOU I, HADAVINIA H, IVANKOVIC A, et al. Cohesive zone models and the plastically deforming peel test[J]. Journal of Adhesion, 2003, 79(3):239-265.
[20] HEL F, LUKASZEWICZ H J A, IVANOV D, et al. Modelling slittape deposition during automated fiber placement[C]//The 19th International Conference on Composite Materials, 2013.
[21] BLACKMAN B R K, HADAVINIA H, KINLOCH A J, et al. The use of a cohesive zone model to study the fracture of fibre composites and adhesively-bonded joints[J]. International Journal of Fracture, 2003, 119(1):25-46.
[22] WILLIAMS J G, HADAVINI H. Analytical solutions for cohesive zone models[J]. Journal of the Mechanics & Physics of Solids, 2002, 50(4):809-825.
[23] HADAVINIA H, KAWASHITA L, KINLOCH A J, et al. A numerical analysis of the elastic-plastic peel test[J]. Engineering Fracture Mechanics, 2006, 73(16):2324-2335.
[24] TAYLOR D. The theory of critical distances[J]. Engineering Fracture Mechanics, 2007, 75(7):1696-1705.
[25] 黄文宗, 孙容磊, 连海涛, 等. 预浸料的铺放适宜性评价(一)-黏性篇[J]. 玻璃钢/复合材料, 2013(6):3-11. HUANG W Z, SUN R L, LIAN H T, et al. Assessment for placement suitability of prepreg-part of tack[J]. Fiber Reinforced Plastic/Composites, 2013(6):3-11(in Chinese).
[26] 舒展, 彭啸, 李发飞. 基于探针试验的预浸料黏性内聚力模型[J]. 航空学报, 2018, 39(2):421416. SHU Z, PENG X, LI F F. Cohesive zone model of prepreg tack based on the probe test[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2):421416(in Chinese).
[27] BEAKOU A, CANO M, CAM J B L, et al. Modelling slit tape buckling during automated prepreg manufacturing:A local approach[J]. Composite Structures, 2011, 93(10):2628-2635.
[28] DIEHL T. On using a penalty-based cohesive-zone finite element approach, Part I:Elastic solution benchmarks[J]. International Journal of Adhesion & Adhesives, 2008, 28(4-5):237-255.
[29] LUKASZEWICZ H J A. Through-thickness compression response of uncured prepreg during manufacture by automated layup[J]. Proceedings of the Institution of Mechanical Engineers Part B:Journal of Engineering Manufacture, 2011, 226(2):193-202.
[30] ERSOY N, GARSTKA T, POTTER K, et al. Development of the properties of a carbon fibre reinforced thermosetting composite through cure[J]. Composites Part A:Applied Science and Manufacturing, 2010, 41(3):401-409.
[31] POTTER K. In-plane and out-of-plane deformation properties of unidirectional preimpregnated reinforcement[J]. Composites Part A:Applied Science and Manufacturing, 2002, 33(11):1469-1477.
[32] LUKASZEWICZ, ADRIAN H J. Optimisation of high-speed automated layup of thermoset carbon-fibre preimpregnates[D]. Britain:University of Bristol, 2011:25-60.
[33] BEAKOU A, MOHAMED A. Influence of variable scattering on the optimum winding angle of cylindrical laminated composites[J]. Composite Structures, 2001, 53(3):287-293.
[34] 黄文宗, 孙容磊, 张鹏, 等. 预浸料的铺放适宜性评价(二)铺覆性篇[J]. 玻璃钢/复合材料, 2013(8):3-7. HUANG W Z, SUN R L, ZHANG P, et al. Assessment for placement suitability of prepreg-part of drape[J]. Fiber Reinforced Plastic/Composites, 2013(8):3-7(in Chinese).
[35] 赵聪, 肖军, 王显峰. 丝束张力对自动铺丝成型工艺的影响[J]. 航空学报, 2016, 37(4):1384-1392. ZHAO C, XIAO J, WANG X F. Effects of tows tension on automated fiber placement process[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1384-1392(in Chinese).
Outlines

/