Material Engineering and Mechanical Manufacturing

A space large-scale deployable compliant concentrator

  • LI Lifang ,
  • GUO Pengzhen ,
  • LIU Rongqiang
Expand
  • 1. Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin 150001, China;
    2. School of Astronautics, Harbin Institute of Technology, Harbin 150001, China;
    3. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China

Received date: 2018-04-10

  Revised date: 2018-05-28

  Online published: 2018-05-28

Supported by

Joint Fund of Equipment Pre-research and CAST (6141B06030202); National Natural Science Foundation of China (51405112); China Postdoctoral Science Foundation (2015T80336)

Abstract

We propose a new configuration for the large-scale lightweight high-precision deployable flexible concentrator considering the need for large-aperture concentrators by the Space Solar Power Station (SSPS). By theoretical modeling, computational simulation, and optimized design, we analyze the problems including the principles of the parabolic configuration, unfolding mechanism and stability of the deployable structure, and accuracy of dynamic focusing. We then complete the design for a largescale deployable compliant concentrator. A multi-layer elastic petal mirror composite structure based on the optimization design method is further proposed for the large-aperture compliant concentrator. Due to the use of a thin-plate and cable structure, the concentrator has the advantages of high accuracy, large volume ratio, light weight, and easy online control, providing an innovative design method for kilometer-scale concentrators used in the SSPS.

Cite this article

LI Lifang , GUO Pengzhen , LIU Rongqiang . A space large-scale deployable compliant concentrator[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(S1) : 722187 -722187 . DOI: 10.7527/S1000-6893.2018.22187

References

[1] 侯欣宾, 王立. 未来能源之路——太空发电站[J]. 国际太空, 2014, 5(5):70-79. HOU X B, WANG L. Future energy road——Space power station[J]. Space International, 2014, 5(5):70-79(in Chinese).
[2] MANKINS J C. The case for space solar power[M]. Houston:Virginia Edition Publishing, 2014:55-72.
[3] ELLIOT P, HARIK E P, MCFATTER J, et al. The international space station solar alpha rotary joint anomaly investigation[C]//Proceedings of the 40th Aerospace Mechanisms Symposium. Washington, D.C.:NASA Kennedy Space Center, 2010:187-206.
[4] CARRINGTON C, FEINGOLD K. Space solar power concepts:Demonstrations to pilot plants[C]//53th International Astronautical Congress. Houston:NASA Marshall Space Flight Center, 2002:10-19.
[5] NATIONAL R C. Laying the foundation for space solar power:An assessment of NASA's space solar power investment strategy[R]. Washington, D.C.:National Academies Press, 2001.
[6] NATIONAL S S O. Space based solar power as an opportunity for strategic security, phase 0 architecture feasibility study[R]. Washington, D.C.:National Security Space Office, 2007.
[7] JAFFE P, HODKIN J, HARRINGTON F. Sandwich module prototype progress for space solar power[J]. Acta Astronautica, 2014, 94(2):662-671.
[8] MORI M, KAGAWA H, SAITO Y. Summary of studies on space solar power systems of Japan Aerospace Exploration Agency (JAXA):IAC-05-C3.1.03[R].2005.
[9] TAKEICHI N, UENO H, ODA M. Feasibility study of a solar power satellite system configured by formation flying[J]. Acta Astronautica, 2005, 57(9):698-706.
[10] MENG X L, XIA X L, SUN C, et al. Optimal design of symmetrical two-stage flat reflected concentrator[J]. Solar Energy, 2013, 93(7):334-344.
[11] YANG Y, ZHANG Y, DUAN B, et al. A novel design project for space solar power station (SSPS-OMEGA)[J]. Acta Astronautica, 2016, 121(1):51-58.
[12] GIEBLER M M, PALMER W B. Study of advanced sunflower precision deployable antenna[R]. California Institute of Techno1ogy, 1979.
[13] PINTZ A, CASTLE C H, REIMER R R, et al. Design of an auto deployable technology demonstration solar concentrator[R]. Ohio:Advanced Manufacturing Center of Cleveland State University, 1989:867-873.
[14] GUEST S D, PELLEGRINO S. A new concept for solid surface deployable antennas[J]. Acta Astronautica, 1996, 38(2):103-113.
[15] GUEST S D. Deployable structure:Concept and analysis[D]. Cambridge:University of Cambridge, 1994:14-25.
[16] SEFFEN K A, YOU Z, PELLEGRINO S. Folding and deployment of curved tape springs[J]. International Journal of Mechanical Sciences, 2000, 42(10):2055-2073.
[17] GUEST S D, PELLEGRINOS S. A new concept for solid surface deployable antennas[J]. Acta Astronautica, 1996, 38(2):103-113.
[18] 戴剑锋, 赵沛, 毛根旺, 等. 用于太阳能推进的可折叠展开式伞状龙骨聚光器[J]. 强激光与粒子束, 2010, 22(1):2295-2298. DAI J F, ZHAO P, MAO G W, et al. Collapsible unfolding umbrella keel concentrator for solar propulsion[J]. High Power Laser and Particle Beams, 2010, 22(1):2295-2298(in Chinese).
[19] CHEN C F, LIN C H, JAN H T. A solar concentrator with two reflection mirrors designed by using a ray tracing method[J]. Optik-International Journal for Light and Electron Optics, 2010, 121(11):1042-1051.
[20] YONG S A, XIA X L, TAN H P. Radiation performance of dish solar concentrator/cavity receiver system[J]. Solar Energy, 2008, 82(1):13-21.
Outlines

/