Fluid Mechanics and Flight Mechanics

Experiment on flow control of airfoil dynamic stall using plasma actuator

  • LI Guoqiang ,
  • CHANG Zhiqiang ,
  • ZHANG Xin ,
  • YANG Pengyu ,
  • CHEN Li
Expand
  • 1. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. Low Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2018-03-05

  Revised date: 2018-04-09

  Online published: 2018-04-09

Supported by

Equipment Pre-research Foundation (30103010301, 30103010304);National Basic Research Program of China (2014CB046200)

Abstract

In view of the problem of deterioration of aerodynamic performance of the airfoil due to dynamic stall, the miniaturized actuation power supply and dielectric barrier discharge plasma actuator are employed to conduct experimental study on the plasma flow control of airfoil dynamic stall by means of dynamic pressure measurement and external trigger Particle Image Velocimetry (PIV). It is shown that the aerodynamic actuation of dielectric barrier discharge plasma can effectively control the airfoil dynamic stall, improve the average aerodynamic force, increase aerodynamic efficiency, and reduce the hysteresis loop region when aerodynamic force varies with the angle of attack. The plasma actuator induces vortex near the leading edge, which promotes the separation flow reattaching to the airfoil surface. The plasma increases the suction of 0.2-0.4 chord length region of the upper surface, and weakens the second, third and fourth order energy of the Power Spectral Density (PSD) distribution. The average lift coefficient is increased by 7.1%, the stall angle of attack is delayed by 1.3°, and the hysteresis loop region is decreased by 4.5%; at the angle of attack of 4°-9°, the plasma actuator reduces the average drag coefficient of the airfoil by 40%. With the increase of the oscillation frequency, the unsteady performance of the flow around airfoil is enhanced, and it is more difficult to suppress the dynamic separation vortices at higher Reynolds number. In these cases, it is necessary to increase the plasma actuation intensity to achieve better control effect.

Cite this article

LI Guoqiang , CHANG Zhiqiang , ZHANG Xin , YANG Pengyu , CHEN Li . Experiment on flow control of airfoil dynamic stall using plasma actuator[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(8) : 122111 -122111 . DOI: 10.7527/S1000-6893.2018.22111

References

[1] 宋科, 杨旭东, 乔志德, 等. 翼型动态失速DBD等离子体流动控制的数值模拟研究[J].航空计算技术, 2010, 40(3):6-8. SONG K,YANG X D, QIAO Z D, et al. Flow control of airfoil dynamic stall based on DBD plasma actuators[J].Aeronautical Computing Technique, 2010, 40(3):6-8(in Chinese).
[2] 王清, 招启军, 赵国庆. 旋翼翼型动态失速流场特性PIV试验研究及L-B模型修正[J].力学学报, 2014, 46(4):631-634. WANG Q, ZHAO Q J, ZHAO G Q. PIV experiments on flowfield characteristics of rotor airfoil dynamic stall and modifications of L-B model[J].Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4):631-634(in Chinese).
[3] 叶辉, 吴庆宪, 陈谋. 非定常条件下大迎角机动控制[J].哈尔滨工业大学学报, 2016, 48(4):84-90. YE H, WU Q X, CHEN M. Control of high angle of attack maneuver under unsteady aerodynamic condition[J]. Journal of Harbin Institute of Technology, 2016, 48(4):84-90(in Chinese).
[4] 屠宝锋, 胡骏. 压气机三维非定常动态失速过程试验研究[J]. 航空学报, 2010, 31(11):2124-2129. TU B F, HU J. Experimental investigation on three-dimensional unsteady stall inception in compressors[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11):2124-2129(in Chinese).
[5] JOO W, LEE B-S, YEE K, et al. Combining passive control method for dynamic stall control[J]. Journal of Aircraft, 2006, 43(4):1120-1128.
[6] HEINE B, MULLENERS K, JOUBERT G, et al. Dynamic stall control by passive disturbance generators[J]. AIAA Journal, 2013, 51(9):2086-2097.
[7] LEE B-S, YEE K, JOO W, et al. Passive control of dynamic stall via nose droop with Gurney flap:AIAA-2005-1364[R]. Reston, VA:AIAA, 2005.
[8] GERONTAKOS P, LEE T. Dynamic stall flow control via a trailing-edge flap[J]. AIAA Journal, 2006, 44(3):469-481.
[9] GERONTAKOS P, LEE T. PIV study of flow around unsteady airfoil with dynamic trailing-edge flap deflection[J]. Experiments in Fluids, 2008, 45(6):955-972.
[10] 许和勇, 邢世龙, 叶正寅, 等. 基于充气前缘技术的旋翼翼型动态失速抑制[J]. 航空学报, 2017, 38(6):86-98. XU H Y, XING S L, YE Z Y, et al. Dynamic stall suppression for rotor airfoil based on inflatable leading edge technology[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6):86-98(in Chinese).
[11] WEAVER D, MCALISTER K W, JIN T. Control of VR-7 dynamic stall by strong steady blowing[J]. Journal of Aircraft, 2004, 41(6):1404-1413.
[12] 罗振兵, 夏智勋, 邓雄, 等. 合成双射流及其流动控制技术研究进展[J]. 空气动力学学报, 2017, 35(2):252-264. LUO Z B, XIA Z X, DENG X, et al. Research progress of dual synthetic jets and its flow control technology[J]. Acta Aerodynamica Sinica, 2017, 35(2):252-264(in Chinese).
[13] 蒋瑾, 杨爱明, 翁培奋. 合成射流用于动态失速控制的数值模拟[J]. 上海大学学报(自然科学版), 2008, 14(4):405-411. JIANG J, YANG A M,WENG P F. Numerical simulation of dynamic stall control using synthetic jet[J].Journal of Shanghai University (Natural Science), 2008, 14(4):405-411(in Chinese).
[14] 韩忠华, 宋文萍, 乔志德. OA212翼型主动流动控制的数值模拟研究[J]. 空气动力学学报, 2009, 27(6):639-644. HAN Z H, SONG W P, QIAO Z D. Numerical simulation of active dynamic stall control on an OA212 rotor airfoil[J]. Acta Aerodynamica Sinica, 2009, 27(6):639-644(in Chinese).
[15] 刘汝兵, 黄印阳, 林麒, 等. 平面线圈电磁耦合的沿面DBD气体放电加速诱导气流的实验研究[J]. 高电压技术, 2014, 40(7):2101-2106. LIU R B, HUANG Y Y, LIN Q, et al. Experimental study on accelerating the gas flow induced by planar coil electromagnetic coupling surface DBD gas discharge[J]. High Voltage Engineering, 2014, 40(7):2101-2106(in Chinese).
[16] 史志伟, 杜海, 李铮, 等. 等离子体流动控制技术原理及典型应用[J]. 高压电器, 2017, 53(4):72-78. SHI Z W, DU H, LI Z, et al. Mechanism and applications of plasma flow control technology[J]. High Voltage Apparatus, 2017, 53(4):72-78(in Chinese).
[17] 苏长兵, 宋慧敏, 李应红. 基于等离子体激励的圆柱绕流控制实验研究[J]. 实验流体力学, 2006, 20(4):45-48. SU C B, SONG H M, LI Y H. Experiments of the flow field structure control around a circular cylinder based on plasma actuation[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(4):45-48(in Chinese).
[18] FRANKHOUSER M, HIRD K, NAIGLE S, et al. Nanosecond dielectric barrier discharge plasma actuator flow control of compressible dynamic stall:AIAA-2015-2341[R]. Reston, VA:AIAA, 2015.
[19] KELLEY C L, BOWLES P, COONEY J, et al. High Mach number leading-edge flow separation control using AC DBD plasma actuators:AIAA-2012-0906[R]. Reston, VA:AIAA, 2012.
[20] KAZUNORI M, SHIGEYA W. Lift enhancement of a pitching airfoil in dynamic stall by DBD plasma actuators:AIAA-2013-1119[R]. Reston, VA:AIAA, 2013.
[21] ACHAL S, DAVID C. Control of dynamic stall over a NACA 0015 airfoil using plasma actuators[J].AIAA Journal, 2018, 56(1):78-89.
[22] LOMBARDI A J, BOWLES P O, CORKE T C. Closed-loop dynamic stall control using a plasma actuator:AIAA-2012-0918[R]. Reston, VA:AIAA, 2012.
[23] POST M L, CORKE T C. Separation control using plasma actuators dynamic stall control on an oscillating airfoil:AIAA-2004-2517[R]. Reston, VA:AIAA, 2004.
[24] 车学科, 聂万胜, 何浩波, 等. 正弦激励的大气压空气放电过程和作用机制[J]. 高压电器, 2010, 46(8):80-84. CHE X K, NIE W S, HE H B, et al. The process and control mechanism of atmospheric pressure gas discharge excited by sine voltage[J]. High Voltage Apparatus, 2010, 46(8):80-84(in Chinese).
[25] 李钢, 聂超群, 朱俊强. 介质阻挡放电等离子体流动控制实验研究[J].工程热物理学报, 2008, 29(7):1117-1120. LI G, NIE C Q, ZHU J Q.Experimental investigation of flow control using dielectric barrier discharge plasma actuators[J]. Journal of Engineering Thermophysics, 2008, 29(7):1117-1120(in Chinese).
[26] RAMSAY R F, HOFFMAN M J, GREGOREK G M. Effects of grit roughness and pitch oscillations on the S809 airfoil:NREL/TP-442-7817[R].Golden, CO:NREL,1995.
[27] BUTTERFIELD C P, MUSIAL W P, SIMMS D A. Combined experiment phase I final report:NREL/TP-257-4655[R].Golden, CO:NREL, 1992.
[28] 李应红, 吴云. 等离子体激励抑制翼型失速分离的实验研究[J]. 空气动力学学报, 2008, 26(3):372-377. LI Y H, WU Y. Experimental investigation on airfoil stall separation suppression by plasma actuation[J]. Acta Aerodynamica Sinica, 2008, 26(3):372-377(in Chinese).
[29] 张攀峰, 王晋军. 等离子体激励低速分离流动控制实验研究[J]. 实验流体力学, 2007, 21(2):35-39. ZHANG P F, WANG J J. Experimental study on the separation control by plasma actuator in subsonic flow[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(2):35-39(in Chinese).
[30] 孟宣市, 王健磊. 不同形式等离子体激励对细长体分离涡的控制[J]. 空气动力学学报, 2013, 31(5):647-651. MENG X S, WANG J L. Flow control over a slender conicalforebody by different plasma actuations[J]. Acta Aerodynamica Sinica, 2013, 31(5):647-651(in Chinese).
Outlines

/