The bridging model is a micromechanical theory for composites with rapid development in resent years. One of its significant features is in that only properties of the fiber and matrix of the composite constituent are required to predict the response of the composite materail. Taking the stress concentration factors of the matrix and the interface debonding effect into account greatly enhance the prediction accuracy. In this paper, all of the latest developments of the bridging model have been programmed into a user subroutine, UGENS, of commercial Finite Element (FE) software ABAQUS's secondary development function. The strength behaviors of the composite lamina, laminate, and a complicated T-joint structure used widely in the aerospace field are then analyzed with the software. The calculated results agree well with the available experimental data.
LU Guanda
,
HUANG Zhengming
. Failure analysis of aeronautic composite structures incorporated with bridging model and FE model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018
, 39(6)
: 221646
-221646
.
DOI: 10.7527/S1000-6893.2017.21646
[1] HUANG Z M. Simulation of the mechanical properties of fibrous composites by the bridging micromechanics model[J]. Composites Part A, 2001, 32(2):143-172.
[2] HUANG Z M, ZHOU Y X. Strength of fibrous composites[M]. Hangzhou:Zhejiang University Press, 2011:23-28.
[3] HINTON M J, KADDOUR A S, SODEN P D. Failure criteria in fibre reinforced polymer composites:The world-wide failure exercise[M]. Amsterdam:Elsevier, 2004:14-15.
[4] SODEN P, KADDOUR A, HINTON M. Recommendations for designers and researchers resulting from the world-wide failure exercise[J]. Composites Science and Technology, 2004, 64(3):589-604
[5] HINTON M J, KADDOUR A S, SODEN P D. A further assessment of the predictive capabilities of current failure theories for composite laminates:comparison with experimental evidence[J]. Composites Science and Technology, 2004, 64(3):549-588.
[6] HUANG Z M, LIU L. Predicting strength of fibrous laminates under triaxial loads only upon independently measured constituent properties[J]. International Journal of Mechanical Sciences, 2014, 79:105-129.
[7] HUANG Z M. Failure analysis of laminated structures by FEM based on nonlinear constitutive relationship[J]. Composite Structures, 2007, 77(3):270-279.
[8] 周熠, 黄争鸣. 考虑含界面裂纹应力集中系数的复合材料强度计算[J]. 航空工程进展, 2017(2):119-124. ZHOU Y, HUANG Z M. The stress concentration factor of composite materials with interfacial cracks[J]. Advances in Aeronautical Science and Engineering, 2017(2):119-124(in Chinese).
[9] ZHOU Y X, HUANG Z M. A modified ultimate failure criterion and material degradation scheme in bridging model prediction for biaxial strength of laminates[J]. Journal of Composite Materials, 2008, 42:2123-2141
[10] ZINOVIEV P A, GRIGORIEV S V, LEBEDEVA O V, et al. The strength of multi-layered composites under a plane-stress state[J]. Composites Science and Technology, 1998, 58(7):1209-1233.
[11] Componeering公司. ESAComp——复合材料结构设计的专用软件[J]. 航空制造技术, 2008, 22(15):104-105. Componeering Corporation. ESAComp composite meterial designing software[J]. Aeronautical Manufacturing Technology, 2008, 22(15):104-105(in Chinese).
[12] FRIEBEL C, DOGHRI I, LEGAT V. General mean-field homogenization schemes for viscoelastic composites containing multiple phases of coated inclusions[J]. International Journal of Solids & Structures, 2006, 43(9):2513-2541.
[13] LEE C S, KIM S K, KIM J H, et al. Initial and progressive failure analyses for composite laminates using Puck failure criterion and damage-coupled finite element method[J]. Composite Structures, 2015, 121:406-419.
[14] HUANG Z M. Inelastic and failure analysis of laminate structures by ABAQUS incorporated with a general constitutive relationship[J]. Journal of Reinforced Plastics and Composites, 2007, 26(11):1135-1181.
[15] 黄争鸣. 桥联理论研究的最新进展[J]. 应用数学和力学, 2015(6):563-581. HUANG Z M. Latest advancements of the bridging model theory[J]. Applied Mathematics and Mechanics, 2015(6):563-581(in Chinese).
[16] HINTON M J, SODEN P D. Predicting failure in composite laminates:The background to the exercise[J]. Composites Science and Technology, 1998, 58(7):1001-1010.
[17] SODEN P D, HINTON M J, KADDOUR A S. A comparison of the predictive capabilities of current failure theories for composite laminates[J]. Composites Science and Technology, 1998, 58(7):1225-1254.
[18] 吴海, 肖加余, 邢素丽, 等. 弯曲载荷作用下复合材料T型接头的失效分析[J]. 国防科技大学学报, 2016(1):56-62. WU H, XIAO J Y, XING S L, et al. Failure analysis of composite T-joints under bending load[J].Journal of National University of Defense Technology, 2016(1):56-62(in Chinese).
[19] 刘波, 燕瑛, 齐忠新, 等. T700经编织物单向板拉伸性能预报及实验验证[C]//全国复合材料学术会议, 2012. LIU B, YAN Y, QI Z X, et al. Tension property prediction and experiment study of T700 warp knitted fabric composite unidirectional iaminates[C]//National Conference on Composite Materials, 2012(in Chinese).
[20] 赵渠森. QY8911树脂系列及其工程应用[J]. 工程塑料应用, 1995(1):1-8. ZHAO Q S. QY8911 BMI series resin and its engineering application[J]. Engineering Plastics Application, 1995(1):1-8(in Chinese).
[21] 徐建新, 曹启武. T700/QY8911缝合复合材料细观力学模型研究[J]. 科学技术与工程, 2014, 14(21):57-62. XU J X, CAO W Q. Study on Micro-mechanical model of the T700/QY8911 stitched composite[J]. Science Technology and Engineering, 2014, 14(21):57-62(in Chinese).
[22] 庄茁. 基于ABAQUS的有限元分析和应用[M]. 北京:清华大学出版社, 2009:492-503. ZHUANG Z. Analysis and application based on ABAQUS CAE software[M]. Beijing:Tsinghua University Press, 2009:492-503(in Chinese).