[1] COLLIER F, THOMAS R, BURLEY C, et al. Environmentally responsible aviation-Real solutions for environmental challenges facing aviation[C]//27th Congress of the International Council of the Aeronautical Sciences 2010. Stockholm:ICAS Secretariat, 2010:300-315.[2] DARECK M, EDELSTENN C, ENDER T, et al. Flightpath 2050 Europe's vision for aviation[R]. Belgium:Advisory Council for Aeronautics Research in Europe, 2011.[3] HEPPERLE M. MDO of forward swept wings[C]//KATnet Ⅱ Multi-Disciplinary Design and Configuration Optimization Workshop, 2008:28-30.[4] ARNAL D, COUSTOLS E, JUILLEN J C. Experimental and theoretical study of transition phenomena on an infinite swept wing[J]. La Recherche Aerospatiale (English Edition), 1984, 1984(4):39-54.[5] DRELA M. Newton solution of coupled viscous/inviscid multielement airfoil flows[C]//21st Fluid Dynamics, Plasma Dynamics and Lasers Conference, 1990:1470.[6] CEBECI T, STEWARTSON K. On stability and transition in three-dimensional flows[J]. AIAA Journal, 1980, 18(4):398-405.[7] MALIK M R. COSAL:A black-box compressible stability analysis code for transition prediction in three-dimensional boundary layers:NASA-CR-165925[R]. Washington,D.C.:NASA, 1982.[8] MACK L M. Stability of three-dimensional boundary layers on swept wings at transonic speeds[C]//IUTAM. Symposium Transsonicum Ⅲ. Berlin Heidelberg:Springer, 1989:209-223.[9] ARNAL D. Transition prediction in transonic flow[C]//IUTAM. Symposium Transsonicum Ⅲ. Berlin Heidelberg:Springer, 1989:253-262.[10] ARNAL D, CASALIS G, JUILLEN J C. Experimental and theoretical analysis of natural transition on "infinite" swept wing[C]//IUTAM. Laminar-Turbulent Transition. Berlin Heidelberg:Springer, 1990:311-325.[11] RADESPIEL R, GRAAGE K, BRODERSEN O. Transition predictions using Reynolds-averaged Navier-Stokes and linear stability analysis methods:AIAA-1991-1641[R]. Reston, VA:AIAA, 1991.[12] CASALIS G, ARNAL D. ELFIN Ⅱ subtask 2.3:Database method-Development and validation of the simplified method for pure cross-flow instability at low speed:ELFIN Ⅱ-145[R]. Toulouse:ONERA-CERT, 1996.[13] STOCK H W, HAASE W. Feasibility study of eN transition prediction in Navier-Stokes methods for airfoils[J]. AIAA Journal, 1999, 37(10):1187-1196.[14] NEBEL C, RADESPIEL R, WOLF T. Transition prediction for 3D flows using a Reynolds-averaged Navier-Stokes code and N-factor methods:AIAA-2003-3593[R]. Reston, VA:AIAA, 2003.[15] KRUMBEIN A. Automatic transition prediction and application to high-lift multi-element configurations:AIAA-2004-2543[R]. Reston, VA:AIAA, 2004.[16] STOCK H W. Infinite swept wing Navier-Stokes computations with eN transition prediction[J]. AIAA Journal, 2005, 43(6):1221-1229.[17] KRUMBEIN A. Automatic transition prediction and application to 3D wing configurations:AIAA-2006-0914[R]. Reston, VA:AIAA, 2006.[18] CLIQUET J, HOUDEVILLE R, ARNAL D. Application of laminar-turbulent transition criteria in Navier-Stokes computations:AIAA-2007-0515[R]. Reston, VA:AIAA, 2007.[19] KRUMBEIN A. eN transition prediction for 3D wing configurations using database methods and a local, linear stability code[J]. Aerospace Science and Technology, 2008, 12(8):592-598.[20] PERRAUD J, ARNAL D, CASALIS G, et al. Automatic transition predictions using simplified methods[J]. AIAA Journal, 2009, 47(11):2676-2684.[21] PERRAUD J, CLIQUET J, HOUDEVILLE R, et al. Transport aircraft three-dimensional high-lift wing numerical transition prediction[J]. Journal of Aircraft, 2008, 45(5):1554-1563.[22] KRIMMELBEIN N, RADESPIEL R, NEBEL C. Numerical aspects of transition prediction for three-dimensional configurations:AIAA-2005-4764[R]. Reston, VA:AIAA, 2005.[23] LEE J D, JAMESON A. Natural-laminar-flow airfoil and wing design by adjoint method and automatic transition prediction:AIAA-2009-0897[R]. Reston, VA:AIAA, 2009.[24] GRABE C, SHENGYANG N, KRUMBEIN A. Transition transport modeling for the prediction of crossflow transition:AIAA-2016-3572[R]. Reston, VA:AIAA, 2016.[25] 张坤, 宋文萍. eN方法在无限展长后掠翼边界层转捩判断中的初步应用[J]. 西北工业大学学报, 2011, 29(1):142-147. ZHANG K, SONG W P. Application of the full eN transition method to the infinite swept-wing's transition prediction[J]. Journal of Northwestern Polytechnical University, 2011, 29(1):142-147(in Chinese).[26] 左岁寒, 杨永, 李栋. 基于线性抛物化稳定性方程的后掠翼边界层内横流稳定性研究[J]. 计算物理, 2010, 27(5):665-670. ZUO S H, YANG Y, LI D. Investigation on cross-flow instabilities in swept-wing boundary layers with linear parabolized stability equations[J]. Chinese Journal of Computational Physics, 2010, 27(5):665-670(in Chinese).[27] 孙朋朋, 黄章峰. 后掠角对后掠机翼边界层稳定性及转捩的影响[J]. 北京航空航天大学学报, 2015, 41(7):1313-1321. SUN P P, HUANG Z F. Effect of sweep angle on stability and transition in a swept-wing boundary layer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7):1313-1321(in Chinese).[28] 靖振荣, 孙朋朋, 黄章峰. 小攻角对后掠机翼边界层稳定性及转捩的影响[J]. 北京航空航天大学学报, 2015, 41(11):2177-2183. JING Z R, SUN P P, HUANG Z F. Effect of attack angle on stability and transition in a swept-wing boundary layer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11):2177-2183(in Chinese).[29] 黄章峰, 逯学志, 于高通. 机翼边界层的横流稳定性分析和转捩预测[J]. 空气动力学学报, 2014, 32(1):14-20. HUANG Z F, LU X Z, YU G T. Cross-flow instability analysis and transition prediction of airfoil boundary layer[J]. Acta Aerodynamica Sinica, 2014, 32(1):14-20(in Chinese).[30] HAN Z H, CHEN J, ZHU Z, et al. Aerodynamic design of transonic natural-laminar-flow (NLF) wing via surrogate-based global optimization:AIAA-2016-2041[R]. Reston, VA:AIAA, 2016.[31] 徐家宽, 白俊强, 乔磊, 等. 后掠翼边界层横流不稳定转捩预测模型[J]. 航空动力学报, 2015, 30(4):927-935. XU J K, BAI J Q, QIAO L, et al. Prediction model of cross-flow instability transition in swept wing boundary layers[J]. Journal of Aerospace Power, 2015, 30(4):927-935(in Chinese).[32] 徐家宽, 白俊强, 乔磊, 等. 横流不稳定性转捩预测模型[J]. 航空学报, 2015, 36(6):1814-1822. XU J K, BAI J Q, QIAO L, et al. Transition model for predicting crossflow instabilities[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1814-1822(in Chinese).[33] 史亚云, 白俊强, 华俊, 等. 基于当地变量的横流转捩预测模型的研究与改进[J]. 航空学报, 2016, 37(3):780-789. SHI Y Y, BAI J Q, HUA J, et al. Study and modification of cross-flow induced transition model based on local variables[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):780-789(in Chinese).[34] 戚琼, 韩庆. 基于Spalart-Allmaras-γ-Reθt转捩模型的横流不稳定性转捩预测方法[J]. 气体物理, 2016, 1(3):19-24. QI Q, HAN Q. Prediction method of cross-flow instabilities-induced transition based on Spalart-Allmaras-γ-Reθt transition model[J]. Physics of Gases, 2016, 1(3):19-24(in Chinese).[35] 鞠胜军, 阎超, 叶志飞. γ-Reθt-CF转捩模型在Spalart-Allmaras湍流模型中的推广及验证[J]. 航空学报, 2017, 38(4):120383. JU S J, YAN C, YE Z F. Genevalization and validation of γ-Reθt-CF transition modeling in combination with Spalart-Allmaras turbulence model[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4):120383(in Chinese).[36] KRUMBEIN A, KRIMMELBEIN N, GRABE C. Streamline-based transition prediction techniques in an unstructured computational fluid dynamics code[J]. AIAA Journal, 2017, 55(5):1548-1564.[37] SMITH A M O, GAMBERONI N. Transition, pressure gradient and stability theory[M]. Long Beach:Douglas Aircraft Company, 1956.[38] INGEN J L V. A suggested semi-empirical method for the calculation of the boundary layer transition region:VTH-74[R]. Delft:Delft University of Technology, 1956.[39] SONG W P, ZHU Z, YANG H, et al. Laminar flow wing's optimization design by RANS solver with automatic transition prediction[C]//28th Congress of the International Council of the Aeronautical Sciences 2012. Stockholm:ICAS Secretariat, 2012:716-725.[40] FEY U, EGAMI Y, ENGLER R. High Reynolds number transition detection by means of temperature sensitive paint:AIAA-2006-0514[R]. Reston, VA:AIAA, 2006.[41] HAN Z H, DENG J, LIU J, et al. Design of laminar supercritical airfoils based on Navier-Stokes equations[C]//28th Congress of the International Council of the Aeronautical Sciences 2012. Stockholm:ICAS Secretariat, 2012:706-715.[42] 乔志德. 自然层流超临界翼型的设计研究[J]. 流体力学实验与测量, 1998, 12(4):23-30. QIAO Z D. Design of supercritical airfoils with natural laminar flow[J]. Experiments and Measurements in Fluid Mechanics, 1998, 12(4):23-30(in Chinese).