[1] BRADLEY M K, DRONEY C K. Subsonic ultra green aircraft research:Phase I final report[R]. Hampton, VA:NASA Langley Research Center, 2011.[2] DAVIES K, NORMAN P, JONES C, et al. A review of turboelectric distributed propulsion technologies for N+3 aircraft electrical systems[C]//Power Engineering Conference, 2013.[3] 张小伟. 民用航空发动机技术发展路线图[C]//第二届中国航空科学技术大会.北京:中国航空工业发展研究中心, 2015:335-340. ZHANG X W. Civil aero-engine technology roadmap[C]//The 2rd China Aviation Science and Technology Conference. Beijing:Aviation Industry Development Research Center of China, 2015:335-340(in Chinese).[4] MASSON P J, NAM T, CHOI T P, et al. Superconducting ducted fan design for reduced emissions aeropropulsion[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3):1662-1668.[5] 闫万方, 吴江浩, 张艳来. 分布式推进关键参数对BWB飞机气动特性影响[J]. 北京航空航天大学学报, 2015, 41(6):1055-1065. YAN W F, WU J H, ZHANG Y L. Effects of distributed propulsion crucial variables on aerodynamic performance of blended wing body aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6):1055-1065(in Chinese).[6] 张曙光, 陆艳辉, 巩磊, 等. 250座级翼身融合无尾布局客机操稳特性设计研究[J]. 航空学报, 2011, 32(10):1761-1769. ZHANG S G, LU Y H, GONG L, et al. Research on design of stability and control of a 250-seat tailless blended-wing-body civil transport aircraft[J].Acta Aeronautica et Astronautica Sinica, 2011, 32(10):1761-1769(in Chinese).[7] 高峰. 翼身融合体飞机的外形设计与气动优化[D]. 南京:南京航空航天大学, 2009. GAO F. Aerodynamicdesign of the blend-wing-body subsonic transport[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2009(in Chinese).[8] 蒋瑾, 钟伯文, 符松. 翼身融合布局飞机总体参数对气动性能的影响[J]. 航空学报, 2016, 37(1):278-289. JIANG J, ZHONG B W, FU S, Influence of overall configuration parameters on aerodynamic characteristics of a blended-wing-body civil aircraft[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(1):278-289(in Chinese).[9] FELDER J L, BROWN G V, KIM H D, et al. Turboelectric distributed propulsion in a hybrid wing body aircraft:ISABE-2011-1340[R]. Cleveland, OH:NASA Glenn Research Center, 2011.[10] BERTON J J, KIM H D, SINGH R, et al. Turboelectric distributed propulsion benefits on the N3-X vehicle[J]. Aircraft Engineering and Aerospace Technology:An International Journal, 2014, 86(6):558-561.[11] KIM H D, BROWN G V, FELDER J L. Distributed turboelectric propulsion for hybrid wing body aircraft[C]//Proceedings of 2008 International Powered Lift Conference. London:Royal Aeronautical Society, 2008.[12] FELDER J L, KIM H D, BROWN G V. Turboelectric distributed propulsion engine cycle analysis for hybrid-wing-body aircraft[C]//47th AIAA Aerospace Sciences Meeting. Reston, VA:AIAA, 2009:1-25.[13] BROWN G V. Weights and efficiencies of electric components of a turboelectric aircraft propulsion system[C]//49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston, VA:AIAA, 2011:1-18.[14] NALIANDA D, SINGH R. Turbo-electric distributed propulsion-opportunities, benefits and challenges[J]. Aircraft Engineering and Aerospace Technology:An International Journal, 2014, 86(6):543-549.[15] GOHARDANI A S, DOULGERIS G, SINGH R. Challenges of future aircraft propulsion:A review of distributed propulsion technology and its potential application for the all electric commercial aircraft[J]. Progress in Aerospace Sciences, 2011, 47(5):369-391.[16] MALKIN P, PAGONIS M. Superconducting electric power systems for hybrid electric aircraft[J]. Aircraft Engineering and Aerospace Technology, 2014, 86(6):515-518.[17] BERG F, PALMER J, MILLER P, et al. HTS electrical system for a distributed propulsion aircraft[J]. IEEE Transactions on Applied Superconductivity, 2015, 25(3):1-5.[18] ARMSTRONG M J, ROSS C A H, BLACKWELDER M J, et al. Propulsion system component considerations for NASA N3-X turboelectric distributed propulsion system[J]. SAE International Journal of Aerospace, 2012, 5(2):344-353.[19] ARMSTRONG M J, ROSS C A H, BLACKWELDER M J, et al. Trade studies for NASA N3-X turboelectric distributed propulsion system electrical power system architecture[J]. SAE International Journal of Aerospace, 2012, 5(2):325-336.[20] 张小伟. 面向2030年的分布式混合电推进技术[C]//第2届中国航空科学技术大会.北京:中国航空工业发展研究中心, 2015:330-334. ZHANG X W. Distributed electric propulsion technology oriented to 2030[C]//The 2rd China Aviation Science and Technology Conference. Beijing:Aviation Industry Development Research Center of China, 2015:330-334(in Chinese).[21] 黄俊, 杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报, 2016, 37(1):57-68. HUANG J, YANG F T. Development and challenges of electric aircraft with new energies[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):57-68(in Chinese).[22] MOORE M D, FREDERICKS B. Misconceptions of electric propulsion aircraft and their emergent aviation markets[C]//52nd Aerospace Sciences Meeting. Reston, VA:AIAA, 2014:1-17.[23] SCHILTGEN B, GIBSON A R, GREEN M, et al. More electric aircraft:"Tube and Wing" hybrid electric distributed propulsion with superconducting and conventional electric machines[C]//SAE 2013 AeroTech Congress & Exhibition. Warrendale, PA:SAE, 2013.[24] JONES C E, DAVIES K, NORMAN P, et al. Protection system considerations for DC distributed electrical propulsion systems[C]//SAE Aerotech Congress and Exhibition. Warrendale, PA:SAE, 2015.[25] MASSON P J, LUONGO C A. HTS machines for applications in all-electric aircraft[C]//Power Engineering Society General Meeting. Piscataway, NJ:IEEE Press, 2007:1-6.[26] MASSON P J, LUONGO C A. High power density superconducting motor for all-electric aircraft propulsion[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2):2226-2229.[27] LUONGO C A, MASSON P J, NAM T, et al. Next generation more-electric aircraft:A potential application for HTS superconductors[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3):1055-1068.[28] JONES C E, NORMAN P J, GALLOWAY S J, et al. Comparison of candidate architectures for future distributed propulsion aircraft[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(6):1-9.[29] DUBOIS A, VAN DER GEEST M, BEVIRT J, et al. Design of an electric propulsion system for SCEPTOR's outboard nacelle[C]//16th AIAA Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2016.[30] DEVER T P, DUFFY K P, PROVENZA A J, et al. Assessment of technologies for noncryogenic hybrid electric propulsion:NASA/TP-2015-216588[R]. Cleveland, OH:NASA Glenn Research Center, 2015.[31] BOLLMAN A M, ARMSTRONG M J, JONES C E, et al. Development of voltage standards for turbo-electric distributed propulsion aircraft power systems[C]//Elec-trical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS). Piscataway, NJ:IEEE Press, 2015.[32] FARHADI M, MOHAMMED O. Energy storage technologies for high-power applications[J]. IEEE Transactions on Industry Applications, 2016, 52(3):1953-1961.[33] 李凤娥, 罗玉梅, 张玉. 电力飞机的技术进展[J]. 中国民航飞行学院学报, 2012, 23(4):17-20. LI F E, LUO Y M, ZHANG Y. A review of electric aircraft technology[J]. Journal of Civil Aviation Flight University of China, 2012, 23(4):17-20(in Chinese).[34] BATALLER-PLANES E, LAPENA-REY N, MOSQU-ERA J, et al. Power balance of a hybrid power source in a power plant for a small propulsion aircraft[J]. IEEE Transactions on Power Electronics, 2009, 24(12):2856-2866.[35] STOLL A M, BEVIRT J B, MOORE M D, et al. Drag reduction through distributed electric propulsion[C]//14th AIAA Aviation Technology, Integration and Operations Conference. Reston, VA:AIAA, 2014:1-10.[36] PATTERSON M D, BORER N K. Approach considerations in aircraft with high-lift propeller systems[C]//17th AIAA Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2017:1-18.[37] BORER N K, DERLAGA J M, DEERE K A, et al. Comparison of aero-propulsive performance predictions for distributed propulsion configurations[C]//55th AIAA Aerospace Sciences Meeting. Reston, VA:AIAA, 2017:1-16.[38] PATTERSON M D, DERLAGA J M, BORER N K. High-lift propeller system configuration selection for NASA's SCEPTOR distributed electric propulsion flight demonstrator[C]//16th AIAA Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2016:1-19.[39] BORER N K, PATTERSON M D, VIKEN J K, et al. Design and performance of the NASA SCEPTOR distributed electric propulsion flight demonstrator[C]//16th AIAA Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2016:1-20.[40] 胡雨. 通用飞机油电混合动力系统设计与优化[D]. 沈阳:沈阳航空航天大学, 2014. HU Y. Design and optimization of a general aircraft's Hybrid electric propulsion system[D]. Shenyang:Shenyang Aerospace University. 2014(in Chinese).[41] JANSEN R H, BOWMAN C, JANKOVSKY A. Sizing power components of an electrically driven tail cone thruster and a range extender[C]//16th AIAA Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2016:1-9.[42] ZHANG X, HARAN K S. High-specific-power electric machines for electrified transportation applications-technology options[C]//Energy Conversion Congress and Exposition (ECCE). Piscataway, NJ:IEEE Press, 2016:1-8.[43] YOON A, YI X, MARTIN J, et al. A high-speed, high-frequency, air-core PM machine for aircraft application[C]//IEEE Power and Energy Conference at Illinois. Piscataway, NJ:IEEE Press, 2016.[44] GOLOVANOV D, GALEA M, GERADA C. High specific torque motor for propulsion system of aircraft[C]//Esars ITEC, 2016.[45] BROWN G V, KASCAK A F, EBIHARA B, et al. NASA Glenn Research Center program in high power density motors for aeropropulsion:NASA/TM-2005-213800[R]. Cleveland, OH:NASA Glenn Research Center, 2005.[46] GAMBLE B, SNITCHLER G, MACDONALD T. Full power test of a 36.5 MW HTS propulsion motor[J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3):1083-1088.[47] NETTER D, LEVEQUE J, AILAM E, et al. Theoretical study of a new kind HTS motor[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2):2186-2189.[48] MASSON P J, BRESCHI M, TIXADOR P, et al. Design of HTS axial flux motor for aircraft propulsion[J].IEEE Transactions on Applied Superconductivity, 2007, 17(2):1533-1536.[49] MOULIN R, LÉVÊQUE J, MERCIER J C, et al. Superconducting multi-stacks motors using the diamagnetism property of bulk material[C]//2008 International Conference on Electrical Machines. Piscataway, NJ:IEEE Press, 2008.[50] MASSON P J, PIENKOS J E, LUONGO C A. Scaling up of HTS motor based on trapped flux and flux concentration for large aircraft propulsion[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2):1579-1582.[51] KALSI S S, WEEBER K, TAKESUE H, et al. Development status of rotating machines employing superconducting field windings[J]. Proceedings of the IEEE, 2004, 92(10):1688-1704.[52] 金建勋, 游虎, 姜在强, 等. 高温超导电缆发展及其应用概述[J]. 南方电网技术, 2015, 9(12):17-28. JIN J X, YOU H, JIANG Z Q, et al. Development and application overview of high temperature superconducting cable[J]. Southern Power System Technology, 2015, 9(12):17-28(in Chinese).[53] MASSON P J, BROWN G V, SOBAN D S, et al. HTS machines as enabling technology for all-electric airborne vehicles[J]. Superconductor Science & Technology, 2007, 20(8):748-756.[54] CHOI T P, MAVRIS D N, MASSON P J. Superconducting machines and power systems for electric-drive aeropropulsion[J]. SAE International Journal of Aerospace, 2008, 1(1):861-875.[55] STRASIK M, HULL J R, MITTLEIDER J A, et al. An overview of Boeing flywheel energy storage systems with high-temperature-superconducting bearings[J]. Superconductor Science and Technology, 2010, 23(3):1-5.