Material Engineering and Mechanical Manufacturing

5-axis onsite inspection path generation and experimental verification of enclosed impeller

  • LI Wenlong ,
  • WANG Gang ,
  • YIN Zhouping
Expand
  • State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 2017-06-02

  Revised date: 2017-08-25

  Online published: 2017-08-25

Supported by

National Basic Research Program of China (2015CB057304); National Natural Science Foundation of China (51535004, 91648111); Wuhan Applied Basic Research Project (2017010201010139)

Abstract

How to generate the 5-axis onsite inspection path of the enclosed impeller with global-fairing advantage is a difficult task, due to its enclosed structure, long-narrow runner and high-bending blades. This paper defines four kinds of accessibility cones, and constructs the objective function of 5-axis onsite inspection path based on the spring model of adjacent inspection axes. The forward Euler-difference method is used to calculate the inspection directions. An enclosed impeller with 5 blades is used to calculate the accessibility cone, optimize the inspection directions and generate the global-fairing inspection paths without interference. The experiments demonstrate the feasibility and validity of the proposed method.

Cite this article

LI Wenlong , WANG Gang , YIN Zhouping . 5-axis onsite inspection path generation and experimental verification of enclosed impeller[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(3) : 421474 -421474 . DOI: 10.7527/S1000-6893.2017.421474

References

[1] 蔺小军, 陈悦, 王志伟, 等. 面向自适应加工的精锻叶片前后缘模型重构[J]. 航空学报, 2015, 36(5):1695-1703. LIN X J, CHEN Y, WANG Z W, et al. Model restructuring about leading edge and trailing edge of precision forging blade for adaptive machining[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1695-1703(in Chinese).
[2] 高健, 黄沛霖, 文章, 等. 复杂曲面零件加工精度原位检测系统的残余误差补偿[J]. 机械工程学报, 2016, 52(15):139-146. GAO J, HUANG P L, WEN Z, et al. Residual error compensation of in-situ inspection system for precision machining of complex components[J]. Journal of Mechanical Engineering, 2016, 52(15):139-146(in Chinese).
[3] LI W L, WANG G, ZHANG G, et al. A interference-free inspection path generation for impeller blades using an on-machine probe[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(3):1218-1226.
[4] 卢万崎, 杨海成, 常智勇, 等. 一种叶片在机测量数据重构建模技术研究[J]. 航空制造技术, 2014(7):84-87. LU W Q, YANG H C, CHANG Z Y, et al. Blade reconstruction method in on-machine inspection[J]. Aeronautical Manufacturing Technology, 2014(7):84-87(in Chinese).
[5] MEARS L, ROTH J T, DJURDJANOVIC D, et al. Quality and inspection of machining operations:CMM integration to the machine tool[J]. ASME Journal of Manufacturing Science and Engineering, 2009, 131(5):051006.
[6] BRANDY H T, DONMEZ MA, GILSINN D E. Methodology for compensating errors detected by process-intermittent inspection[M]. Gaithersburg:National Institute of Standards and Technology, 2001.
[7] CHO M W, KIM G H, SEO T I, et al. Integrated machining error compensation method using OMM data and modified PNN algorithm[J]. International Journal of Machine Tools and Manufacture, 2006, 46(12-13):1417-1427.
[8] CHO M W, SEO T I. 2002 inspection planning strategy for the on-machine measurement process based on CAD/CAM/CAI integration[J]. International Journal of Advanced Manufacturing Technology, 2002, 19(8):607-617.
[9] 陈岳坪, 高健, 邓海祥, 等. 复杂曲面的在线检测与加工误差补偿方法研究[J]. 机械工程学报, 2012, 48(23):143-151. CHEN Y P, GAO J, DENG H X, et al. On-line inspection and machining error compensation for complex surfaces[J]. Journal of Mechanical Engineering, 2012, 48(23):143-151(in Chinese).
[10] HUANG N D, BI Q Z, WANG Y H, et al. 5-axis adaptive flank milling of flexible thin-walled parts based on the on-machine measurement[J]. International Journal of Machine Tools and Manufacture, 2014, 84(6):1-8.
[11] CHO M, KIM D, LEE C, et al. CBIMS:Case-based impeller machining strategy support system[J]. Robotics and Computer-Integrated Manufacturing, 2009, 25(6):980-988.
[12] LIU H B, WANG Y Q, JIA Z Y, et al. Integration strategy of on-machine measurement (OMM) and numerical control (NC) machining for the large thin-walled parts with surface correlative constraint[J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(9-12):1721-1731.
[13] MENG F J, CHEN Z Y, XU R F, et al. Optimal barrel cutter selection for the CNC machining of blisk[J]. Computer-Aided Design, 2014, 53(5):36-45.
[14] 王晶, 张定华, 罗明, 等. 复杂曲面零件五轴加工刀轴整体优化方法[J]. 航空学报, 2013, 34(6):1452-1462. WANG J, ZHANG D H, LUO M, et al. A global tool orientation optimization method for five-axis CNC machining of sculptured surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6):1452-1462(in Chinese).
[15] CHEN K H. Investigation of tool orientation for milling blade of impeller in five-axis machining[J]. International Journal of Advanced Manufacturing Technology, 2011, 52(1-4):235-244.
[16] CHU C H, HUANG W N, LI Y W. An integrated framework of tool path planning in 5-axis machining of centrifugal impeller with split blades[J]. Journal of Intelligent Manufacturing, 2012, 23(3):687-698.
[17] WU B H, ZHANG D H, LUO M, et al. Collision and interference correction for impeller machining with non-orthogonal four-axis machine tool[J]. International Journal of Advanced Manufacturing Technology, 2013, 68(1-4):693-700.
[18] BI Q Z, WANG Y H, DING H. A GPU-based algorithm for generating collision-free and orientation-smooth five-axis finishing tool paths of a ball-end cutter[J]. International Journal of Production Research, 2010, 48(4):1105-1124.
[19] BI Q Z, WANG Y H, ZHU L M, et al. Wholly smoothing cutter orientations for five-axis NC machining based on cutter contact point mesh[J]. Science in China Series E:Technological Sciences, 2010, 53(5):1294-1303.
[20] PLAKHOTNIK D, LAUWERS B. Graph-based optimization of five-axis machine tool movements by varying tool orientation[J]. International Journal of Advanced Manufacturing Technology, 2014, 74(1):307-318.
Outlines

/