ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Design and size optimization of flexible hinge based on unit of four-link linkage
Received date: 2017-03-27
Revised date: 2017-07-20
Online published: 2017-07-20
Supported by
National Natural Science Foundation of China (51505319); Special/Youth Foundation of Taiyuan University of Technology (2014TD040); Qualified Personnel Foundation of Taiyuan University of Technology (tyut-rc201448a)
Small rotation angle and big center-shift are the main problems of flexure hinges. To solve these problems, the flexible hinge with big angle and high precision is designed. Using the characteristics of angle amplification of the crank rocker mechanism of the four-link linkage, the articulated points of the linkage are fixed. The fixed four-bar linkage is taken as the deformation module. By using the small deformation of the rocker in the four-link linkage, motion of large rotational angle of the flexible hinge is realized. The fixed four-bar linkage in the flexible hinge is a statically indeterminate structure. Based on the theory of statically indeterminate structure, deformation and stress analysis of the flexible unit is conducted. The stiffness model for the flexure hinge is given. The objective function is derived based on the stiffness model, and the design variables and constraints are defined. The size of the flexure hinge is optimized by using the genetic algorithm. Analysis of the deformation and stress of a specific size of the flexible hinge using ANSYS software validates correctness of the optimization results.
Key words: flexible hinge; four-link linkage; large rotational angle; stiffness; optimization
ZHANG Jing , KOU Ziming . Design and size optimization of flexible hinge based on unit of four-link linkage[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(11) : 421283 -421283 . DOI: 10.7527/S1000-6893.2017.421283
[1] 于靖军, 郝广波, 陈贵敏, 等. 柔性机构及其应用研究进展[J]. 机械工程学报, 2015, 51(13):53-68. YU J J, HAO G B, CHEN G M, et al. State-of-art of compliant mechanisms and their applications[J]. Journal of Mechanical Engineering, 2015, 51(13):53-68(in Chinese).
[2] ZHU W L, ZHU Z W, SHI Y, et al. Design, modeling, analysis and testing of a novel piezo-actuated XY compliant mechanism for large workspace nano-positioning[J]. Smart Materials and Structures, 2016, 25(11):115033.
[3] YANG C, YAN J H, DUKIC M, et al. Design of a high-bandwidth tripod scanner for high speed atomic force microscopy[J]. Scanning, 2016, 38(6):889-900.
[4] 于靖军, 毕树生, 宗光华. 空间全柔性机构位置分析的刚度矩阵法[J]. 北京航空航天大学学报, 2002, 28(3):323-326. YU J J, BI S S, ZONG G H. Stiffness matrix method for displacement analysis of fully spatial compliant mechanisms[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(3):323-326(in Chinese).
[5] SOYKASAP Ö, PELLEGRINO S, HOWARD P, et al. Folding large antenna tape spring[J]. Journal of Spacecraft and Rockets, 2008, 45(3):560-567.
[6] AJI A K, HARRIS M, GARCIA D, et al. Feasibility assessment of deployable composite telescope[J]. Journal of Aerospace Engineering, 2011, 24(1):12-19.
[7] PEI X, YU J J, ZONG G H, et al. Analysis of rotational precision for an isosceles-trapezoidal flexural pivot[J]. Journal of Mechanical Design, 2008, 130(5):680-682.
[8] YU J J, LI S Z, SU H J, et al. Screw theory based methodology for the deterministic type synthesis of flexure mechanisms[J]. Journal of Mechanisms & Robotics, 2011, 3(3):1194-1204.
[9] HOPKINS J B, PANAS R M. Design of flexure-based precision transmission mechanisms using screw theory[J]. Precision Engineering, 2013, 37(2):299-307.
[10] DIBIASIO C M, HOPKINS J B. Sensitivity of freedom spaces during flexure stage design via FACT[J]. Precision Engineering, 2012, 36(3):494-499.
[11] KIM C J, KOTA S, MOON Y M. An instant center approach toward the conceptual design of compliant mechanisms[J]. Journal of Mechanical Design, 2005, 128(3):542-550.
[12] KIM C J, MOON Y M, KOTA S. A building block approach to the conceptual synthesis of complaint mechanisms utilizing compliance and stiffness ellipsoids[J]. Journal of Mechanical Design, 2008, 130(2):022308-1-022308-11.
[13] REDDY B, NAIK S, SAXENA K. Systematic synthesis of large displacement contact-aided monolithic compliant mechanisms[J]. Journal of Mechanical Design, 2012, 134(1):011007-1-011007-12.
[14] 于靖军, 裴旭, 毕树生, 等. 柔性铰链机构设计方法的研究进展[J]. 机械工程学报, 2010, 46(13):2-13. YU J J, PEI X, BI S S, et al. State-of-arts of design method for flexure mechanisms[J]. Journal of Mechanical Engineering, 2010, 46(13):2-13(in Chinese).
[15] 曹玉岩, 王志臣, 周超, 等. 考虑材料和几何构型的环形柔性铰链优化设计[J]. 机械工程学报, 2017,53(9):46-57. CAO Y Y, WANG Z C, ZHOU C, et al. Optimization of circular-axis flexure hinge by considering material selection and geometrical configuration simultaneously[J]. Journal of Mechanical Engineering, 2017,53(9):46-57(in Chinese).
[16] CIBLAK N, LIPKIN H. Design and analysis of remote center of compliance structures[J]. Journal of Robotic Systems, 2003, 20(8):415-427.
[17] FOWLER R M, MASELLI A, PLUIMERS P, et al. Flex-16:A large-displacement monolithic compliant rotational hinge[J]. Mechanism & Machine Theory, 2014, 82(24):203-217.
[18] YU J J, LU D F, XIE Y. Constraint design principle of large-displacement flexure systems[C]//2014 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), 2014:255-260.
[19] HOPKINS J B, VERICELLA J J, HARVEY C D. Modeling and generating parallel flexure elements[J]. Precision Engineering, 2014, 38(3):525-537.
[20] PANAS R M, HOPKINS J B. Eliminating underconstraint in double parallelogram flexure mechanisms[J]. Journal of Mechanical Design, 2014, 137(9):092301-1-092301-9.
[21] 邱丽芳, 孟天祥, 张九俏, 等. 梳齿形柔性铰链的设计与分析[J]. 东北大学学报(自然科学版), 2014, 35(9):1316-1320. QIU L F, MENG T X, ZHANG J Q, et al. Design and analysis of comb-shaped flexure joint[J]. Journal of Northeastern University (Natural Science), 2014, 35(9):1316-1320(in Chinese).
[22] 赵山杉, 毕树生, 宗光华, 等. 基于曲线柔性单元的新型大变形柔性铰链[J]. 机械工程学报, 2009, 45(4):8-12. ZHAO S S, BI S S, ZONG G H, et al. New large-deflection flexure pivot based on curved flexure element[J]. Journal of Mechanical Engineering, 2009, 45(4):8-12(in Chinese).
/
〈 | 〉 |