ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Optimal design of adaptive compliant trailing edge based on parametric analysis
Received date: 2017-05-25
Revised date: 2017-07-18
Online published: 2017-07-18
The research introduces a kind of optimal design method of shape control for adaptive compliant trailing edge. The key design issue of the approach is the synthesis of a suitable topology for the compliant trailing edge which can produce a precise deformation. This paper illustrates the mathematic model of the topological optimization of compliant structures, and proposes a topology optimal design method based on parametric analysis for compliant trailing edge of adaptive wing. In this approach the engineering roundness and dimensional optimal procedure are followed. Finally, the optimal design method for compliant trailing edge is validated by a nonlinear finite element analysis and a functional test.
WANG Zhigang , YANG Yu , DUAN Shihui . Optimal design of adaptive compliant trailing edge based on parametric analysis[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(S1) : 721562 -721562 . DOI: 10.7527/S1000-6893.2017.721562
[1] SAGGERE L, KOTA S. Static shape control of smart structures using compliant mechanisms[J]. AIAA Journal, 1999, 37(5): 572-578.
[2] KOTA S. Compliant systems using monolithic mechanisms[J]. Smart Materials Bulletin, 2000, 39(5): 7-10.
[3] KOTA S, HETRICK J, OSBORN R, et al. Design and application of compliant mechanisms for morphing aircraft structures[J]. Smart Structures and Materials, 2003, 5054: 24-33.
[4] TREASE P B, KOTA S. Synthesis of adaptive and controllable compliant systems with embedded actuators and sensors[J]. Journal of Mechanical Design, 2007, 131(11): 77-89.
[5] HETRICK J, OSBOR F R, KOTA S, et al. Flight testing of mission adaptive compliant wing[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA: AIAA, 2007.
[6] 朱鹏刚, 葛文杰, 张永红, 等. 基于SIMP和GA变形柔性机翼后缘的拓扑优化[J]. 机械科学与技术, 2009, 28(11): 1468-1472. ZHU P G, GE W J, ZHANG Y H, et al. Topology optimization for shape morphing compliant trailing edge using SIMP and GA[J]. Mechanical Science and Technology for Aerospace Engineering, 2009, 28(11): 1468-1472 (in Chinese).
[7] 黄杰, 葛文杰. 基于变密度法的形状变化全柔性机构设计及实验研究[J]. 航空兵器, 2009(2): 39-42. HUANG J, GE W J. Design and experiment study of shape changing fully flexible mechanism based on variational density method[J]. Aero Weaponry, 2009(2): 39-42 (in Chinese).
[8] 陈建超, 张永红, 葛文杰, 等. 基于多材料组合的柔性机翼前缘拓扑优化[J]. 机械设计, 2011, 28(6): 61-66. CHEN J C, ZHANG Y H, GE W J, et al. Topology optimization for compliant wing leading edge based on multi-material combination[J]. Journal of Machine Design, 2011, 28(6): 61-66 (in Chinese).
[9] 葛文杰, 朱鹏刚, 刘世丽, 等. 基于柔性机构的机翼前缘变形多目标优化[J]. 西北工业大学学报, 2010, 28(2): 211-216. GE W J, ZHU P G, LIU S L, et al. Exploring multi-objective optimization for shape change of aircraft leading edge using compliant mechanisms[J]. Journal of Northwestern Polytechnical University, 2010, 28(2): 211-216(in Chinese).
[10] 张龙, 王和平, 葛文杰, 等. 基于柔性翼肋的变形机翼几何参数设计[J]. 航空计算技术, 2009, 39(1): 1-5. ZHANG L, WANG H P, GE W J, et al. A compliant rib based morphing wing geometric parameters design[J]. Aeronautical Computing Technique, 2009, 39(1): 1-5 (in Chinese).
[11] 杨智春, 解江. 柔性后缘自适应机翼的概念设计[J]. 航空学报, 2009, 30(6): 1028-1034. YANG Z C, XIE J. Concept design of adaptive wing with flexible trailing edge[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6): 1028-1034 (in Chinese).
[12] 解江, 杨智春, 党会学. 柔性后缘自适应机翼气动特性和操纵反效特性的比较分析[J]. 工程力学, 2009, 26(10): 245-251 XIE J, YANG Z C, DANG H X. Comparative study on aerodynamics and control reversal characteristics of adaptive wings with flexible trailing edge[J]. Engineering Mechanics, 2009, 26(10): 245-251 (in Chinese).
[13] 张大为, 石庆华, 王云杨, 等. 柔性后缘单索传动机构的设计与分析[J]. 哈尔滨工业大学学报, 2015, 47(10): 25-28. ZHANG D W, SHI Q H, WANG Y Y, et al. Design and analysis of single cable transmission for flexible trailing edge[J]. Journal of Harbin Institute of Technology, 2015, 47(10): 25-28 (in Chinese).
[14] 尹维龙, 张大为, 石庆华, 等. 变体后缘索网传动机构的优化设计[J]. 南京航空航天大学学报, 2014, 46(2): 292-296. YIN W L, ZHANG D W, SHI Q H, et al. Optimization of transmission mechanism with cable networks for morphing trailing edge[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(2): 292-296 (in Chinese).
[15] 尹维龙, 石庆华, 田东奎. 变体柔性后缘的索网传动设计与力学分析[J]. 航空学报, 2013, 34(8):1824-1831. YIN W L, SHI Q H, TIAN D K. Design and analysis of transimission mechanism with cable network for morphing trailing edge[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8): 1824-1831 (in Chinese).
[16] 尹维龙, 石庆华, 田东奎. 柔性后缘复合材料基板的参数设计[C]//第17届全国复合材料学术会议, 2012. YIN W L, SHI Q H, TIAN D K. Parameter design of composite mid-plate for flexible frailing-edge[C]//17th National Conference on Composite Materials,2012 (in Chinese).
[17] 黄杰, 葛文杰, 杨方. 实现机翼前缘形状连续变化柔性机构的拓扑优化[J]. 航空学报, 2007, 28(4): 988-992. HUANG J, GE W J, YANG F. Topology optimization of the compliant mechanism for shape change of airfoil leading edge[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4): 988-992 (in Chinese).
[18] LIU S L, GE W J, LI S J. Optimal synthesis of compliant trailing edge for morphing[J]. Chinese Journal of Aeronautics, 2008, 21(2): 187-192.
[19] 陈秀, 葛文杰, 张永红. 基于遗传算法的柔性机构形状变化综合优化研究[J]. 航空学报, 2007, 28(5): 1230-1235. CHEN X, GE W J, ZHANG Y H. Investigation on synthesis optimization for shape morphing compliant mechanisms using GA[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(5): 1230-1235 (in Chinese).
[20] 张平, 周丽, 邱涛. 一种新的柔性蜂窝结构及其在变体飞机中的应用[J]. 航空学报, 2011, 32(1): 156-163. ZHANG P, ZHOU L, QIU T. A new flexible honeycomb structure and its application in structure design of morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1): 156-163 (in Chinese).
/
〈 | 〉 |