Fluid Mechanics and Flight Mechanics

Control law design for temperature control system of large-scale aircraft cabin

  • REN Mingbo ,
  • WANG Juan ,
  • LI Rongjun ,
  • DANG Ya
Expand
  • Electro-mechanical System Design and Research Department, AVIC The First Aircraft Institute, Xi'an 710089, China

Received date: 2017-05-25

  Revised date: 2017-06-29

  Online published: 2017-06-27

Abstract

A large-scale aircraft cabin temperature control system with the characteristics of non-linearity, complex coupling and big hysteresis proposes high requirements for the system control law design. In this paper, an innovative cabin temperature control law is proposed according to the system design requirements as well as the operation mechanism behavior feature. The system control scheme applies a four-level control mode, including the compressor outlet temperature control, the cooling pack outlet temperature control, the cabin supply air outlet temperature control and the cabin zone temperature control. The target of the compressor outlet temperature is calculated according to the ambient environment temperature. The target of the cabin supply air temperature is calculated by the cabin zone control error. The target of the cooling pack outlet temperature is determined by the lowest value of the cabin supply air temperature. The expert Proportion-Integration-Differentiation (PID) control method is employed to design the temperature controller. The decoupling control arithmetic and the system protection control logic are included in the design. The control period of the operation mechanism is determined by the temperature control response of each level. It is proved by the system ground test and flight test that the cabin temperature control system demonstrates the capability of quick response, strong anti-interference, high control accuracy, and can satisfy the system design requirements.

Cite this article

REN Mingbo , WANG Juan , LI Rongjun , DANG Ya . Control law design for temperature control system of large-scale aircraft cabin[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(S1) : 721501 -721501 . DOI: 10.7527/S1000-6893.2017.721501

References

[1] 朱春玲.飞行器环境控制与安全救生[M].北京:北京航空航天大学出版社,2006:322-332. ZHU C L.Aircraft environmental control and life saving[M].Beijing: Beihang University Press, 2006: 322-332 (in Chinese).
[2] 何君,赵竞全,袁修干.飞机环境控制系统的模糊控制研究[J].北京航空航天大学学报,2004,30(12):1511-1514. HE J, ZHAO J Q, YUAN X G. Fuzzy control of aircraft environmental control system[J].Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(12):1511-1514 (in Chinese).
[3] 何君,赵竞全,袁修干.高压除水环境控制系统的解耦控制[J].北京航空航天大学学报,2002,28(2):225-227. HE J, ZHAO J Q, YUAN X G. Decoupling control of aircraft environmental control system with high pressure water separation[J].Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(2):225-227(in Chinese).
[4] 刘金琨.智能控制[M].北京:电子工业出版社,2009:1-60. LIU J K. Intelligent control[M].Beijing: Publishing House of Electronics Industry, 2009:1-60 (in Chinese).
[5] 刘金琨. 先进PID控制及其MATLAB仿真[M].北京:电子工业出版社,2003:1-67. LIU J K. Advanced PID control and MATLAB simulation[M].Beijing: Publishing House of Electronics Industry, 2003:1-67 (in Chinese).
[6] 陈元先.旅客机环境控制系统的发展[J].航空学报,1999, 20(S1):8-10. CHEN Y X. Evolution of the environment control system for commercial aircraft[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(S1):8-10(in Chinese).
[7] 宁献文,张丽珍,王浚. 旅客机座舱热舒适动态特性仿真[J].航空学报,2006,27(4):551-555. NING X W, ZHANG L Z, WANG J. Simulation of dynamics characteristics for airlines cabin thermal comfort[J].Acta Aeronautica et Astronautica Sinica, 2006, 27(4):551-555 (in Chinese).
[8] YOO B K, HAM W C. Adaptive control of robot manipulator using fuzzy compensator[J].IEEE Transaction on Fuzzy Systems, 2000, 8(2):186-199.
[9] 屠毅,林贵平.大型飞机座舱温度控制系统仿真研究 [J].航空学报,2011,32(1):49-57. TU Y, LIN G P. Simulation of the large scale aircraft cabin temperature control system [J].Acta Aeronautica et Astronautica Sinica, 2011, 32(1):49-57 (in Chinese).
[10] 韦巍.智能控制技术[M].北京:机械工业出版社,2010:1-30. WEI W. Intelligent control technique [M].Beijing: Mechanical Industry Press, 2000:1-30 (in Chinese).
[11] 袁修干.高性能军机环境控制系统研究发展趋势的探讨[J].航空学报,1999,20(S1):1-3. YUAN X G. Developing trend discussion of environment control system of high performance military aircraft[J].Acta Aeronautica et Astronautica Sinica, 1999, 20(S1):1-3 (in Chinese).
[12] 袁修干.旅客机空气参数调节[M].北京:国防工业出版社,1980:32-55. YUAN X G. Airlines cabin air conditioning [M]. Beijing: National Defense Industry Press,1980:32-55(in Chinese).
[13] 姚洪伟,王浚.歼击机环境控制系统控制性能分析[J]. 中国工程科学,2006,8(6):44-47. YAO H W, WANG J. Analysis of control performance of ECS in fighter plane[J]. Engineering Science, 2006,8(6):44-47 (in Chinese).
[14] 李可,庞丽萍,刘旺开, 等.环境模拟舱体的建模仿真与控制方法[J].北京航空航天大学学报,2007,33(5):535-538. LI K, PANG L P, LIU W K, et al. System model simulation and control method used in environment simulation chambers[J].Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(5):535-538(in Chinese).
[15] 邢用忠,徐志良,张少杰,等.大型低温环境模拟试验系统Smith模糊专家PID控制算法实现[J].兵工学报,2008,29(12):1522-1526. XING Y Z, XU Z L, ZHANG S J, et al. Implementation of Smith-fuzzy-expert PID algorithm for low temperature environment simulation test system[J].Acta Armamentrii, 2008, 29(12):1522-1526(in Chinese).
[16] SOYGUDER S, ALLI H. An expert system for humidity and temperature control in HVAC systems using ANFIS and optimization with fuzzy modeling approach[J].Energy and Buildings, 2009,41(8):814-822.
[17] ETIK M, ALLAHVERDI N, SERT I U, et al.Fuzzy expert system design for operating room air-condition control system[J].Expert Systems with Application, 2009, 36(6):9753-9758.
[18] LYGOURAS J N, BOTSARIS P N, VOURVOULAKIS J, et al.Fuzzy logic controller implementation for a solar air-condition system[J].Applied Energy, 2007, 84(12):1305-1318.
[19] 胡寿松. 自动控制原理[M].北京:科学出版社,2008. HU S S. Principle of automatic control[M]. Beijing: Science Press, 2008(in Chinese).
[20] 孙增圻.智能控制理论与技术[M].北京:清华大学出版社,1997. SUN Z Q. Intelligent control theory and technology[M].Beijing: Tsinghua University Press, 1997(in Chinese).

Outlines

/