Fluid Mechanics and Flight Mechanics

Experimental study of effects of fluidic obstacle parameters on deflagration-to-detonation transition

  • PENG Han ,
  • HUANG Yue ,
  • LIU Chen ,
  • XING Fei ,
  • LUAN Zhenye
Expand
  • School of Aerospace Engineering, Xiamen University, Xiamen 361005, China

Received date: 2017-05-12

  Revised date: 2017-06-27

  Online published: 2017-06-27

Supported by

National Natural Science Foundation of China (51406171); the Fundamental Research Funds for the Central Universities (20720150094); Natural Science Foundation of Fujian Province (2015J05111); Aeronautical Science Foundation of China(20152868006)

Abstract

To investigate the effect of jet in cross flow on the process of Deflagration-to-Detonation Transition (DDT), an single-shot detonation experiment is conducted in a rectangular channel with a height of 20 mm, a depth of 6 mm, and a total length of 810 mm. The premixed methane/oxygen mixture is the reactant, which is ignited by a 50 mJ spark plug. The diameter of the injector of jet in cross flow is 1 mm, and the injection gas is the same concentration premixed mixture. The effect of the jet delay time, the jet location, the quantity and jet distribution pattern on detonation initiation are studied by a series of tests. The results show that there exits at various injection locations the corresponding optimal jet delay time to minimize the DDT time. The DDT time of the parallel double jets located 90 and 270 mm away from the ignition zone and the staggered jets located at 90 and 180 mm away from the ignition zone is the shortest, about 1 ms.

Cite this article

PENG Han , HUANG Yue , LIU Chen , XING Fei , LUAN Zhenye . Experimental study of effects of fluidic obstacle parameters on deflagration-to-detonation transition[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018 , 39(2) : 121412 -121412 . DOI: 10.7527/S1000-6893.2017.121412

References

[1] KAILASANATH K. Review of propulsion applications of detonation waves[J]. AIAA Journal, 2015, 38(9):1698-1708.[2] PANDEY K M, DEBNATH P. Review on recent advances in pulse detonation engines[J]. Journal of Combustion, 2016(5):4193034.[3] AUSTIN J M, SHEPHERD J E. Detonations in hydrocarbon fuel blends[J]. Combustion & Flame, 2003, 132(1):73-90.[4] 严传俊, 范玮. 脉冲爆震发动机原理及关键技术[M]. 西安:西北工业大学出版社, 2005:9-14. YAN C J, FAN W. Principle and key technologies of pulse detonation engine[M]. Xi'an:Northwestern Polytechnical University Press, 2005:9-14(in Chinese).[5] 黄玥, 唐豪, 李建中, 等. 煤油/空气小尺寸脉冲爆震发动机实验研究[J]. 航空学报, 2009, 30(11):2015-2022. HUANG Y, TANG H, LI J Z, et al. Experimental investigation on small-scale pulse detonation engine with kerosene/air[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(11):2015-2022(in Chinese).[6] BAZHENOVA T V, GOLUB V V. Use of gas detonation in a controlled frequency mode[J]. Combustion, Explosion and Shock Waves, 2003, 39(4):365-381.[7] LEE J H S. The detonation phenomenon[M]. Cambridge:Cambridge University Press, 2008:267-271.[8] COOPER M, JACKSON S, AUSTIN J, et al. Direct experimental impulse measurements for detonations and deflagrations[J]. Journal of Propulsion and Power, 2002, 18(5):1033-1041.[9] LEE S Y, CONRAD C, WATTS J, et al. Deflagration to detonation transition study using simultaneous schlieren and OH PLIF images[C]//36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, VA:AIAA, 2000:3217.[10] TEODORCZYK A, DROBNIAK P, DABKOWSKI A. Fast turbulent deflagration and DDT of hydrogen-air mixtures in small obstructed channel[J]. International Journal of Hydrogen Energy, 2009, 34(14):5887-5893.[11] PAXSON D, SCHAUER F, Hopper D. Performance impact of deflagration to detonation transition enhancing obstacles[C]//47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston, VA:AIAA, 2012:502.[12] 邓君香, 严传俊, 郑龙席, 等. 障碍物对脉冲爆震发动机性能影响的数值模拟[J]. 航空学报, 2009, 30(4):614-621. DENG J X, YAN C J, ZHENG L X, et al. Numerical simulation of effect of obstacles on pulse detonation engine performances[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(4):614-621(in Chinese).[13] AHMED K A, FORLITI D J. Fluidic flame stabilization in a planar combustor using a transverse slot jet[J]. AIAA Journal, 2009, 47(11):2770-2775.[14] KNOX B W, FORLITI D J, STEVENS C A, et al. Unsteady flame speed control and deflagration-to-detonation transition enhancement using fluidic obstacles[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston, VA:AIAA, 2010:151.[15] KNOX B, FORLITI D, STEVENS C, et al. A comparison of fluidic and physical obstacles for deflagration-to-detonation transition[C]//49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston, VA:AIAA, 2011:587.[16] MCGARRY J, AHMED K. Laminar deflagrated flame interaction with a fluidic jet flow for deflagration-to-detonation flame acceleration[C]//51st AIAA/SAE/ASEE Joint Propulsion Conference. Reston, VA:AIAA, 2015:4096.[17] CHAMBERS J, MCGARRY J, AHMED K. Fluidic jet augmentation of a deflagrated turbulent flame for deflagration-to-detonation[C]//54th AIAA Aerospace Sciences Meeting. Reston, VA:AIAA, 2016:0443.[18] 白桥栋, 翁春生. 射流对爆轰波传播过程影响的理论研究[J]. 弹道学报, 2013, 25(3):83-87. BAI Q D, WENG C S. Theoretical study of influence of jet flow on propagation of detonation wave[J]. Journal of Ballistics, 2013, 25(3):83-87(in Chinese).[19] 王永佳, 范玮, 张扬, 等. 流体障碍物对爆震燃烧起爆性能影响的实验研究[J]. 推进技术, 2017, 38(3):646-652. WANG Y J, FAN W, ZHANG Y, et al. Experimental study for effects of fluidic obstacles on detonation initiation performance[J]. Journal of Propulsion Technology, 2017, 38(3):646-652(in Chinese).[20] LIU C, HUANG Y, YANG W, et al. Study on effects of fluidic obstacle on flame acceleration and deflagration-to-detonation transition[C]//21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston, VA:AIAA, 2017:2261.[21] SCHWER D A, KAILASANATH K. Effect of low pressure ratio on exhaust plumes of rotating detonation engines[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, VA:AIAA, 2014:3901.
Outlines

/