Solid Mechanics and Vehicle Conceptual Design

Test and prediction model of statics property of fiber metal laminates

  • TONG Anshi ,
  • XIE Liyang ,
  • BAI Enjun ,
  • BAI Xin ,
  • ZHANG Shijian ,
  • WANG Bowen
Expand
  • School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China

Received date: 2017-02-27

  Revised date: 2017-06-23

  Online published: 2017-06-23

Supported by

National Natural Science Foundation of China (51335003)

Abstract

To investigate the nonlinear tensile response and fracture behavior of Fiber Metal Laminates (FMLs), tests of static tensile of GLARE2-2/1, GLARE2-3/2, GLARE3-2/1, GLARE3-3/2, GLARE6-2/1 and GLARE6-3/2 laminates were carried out. Digital Image Correlation (DIC) techniques were employed to observe the full-field strain of GLARE2-3/2, GLARE3-3/2, and GLARE6-3/2 laminates during loading. An analytical constitutive model based on a modified classical lamination theory, which considers both the elastic-plastic behavior of the aluminium alloy and the damage process of prepreg layers, are proposed to predict the elasticity modulus, tensile strength and stress-strain response of GLARE laminates. The prediction results are compared with the test results. To identify the damage characteristics of the glass/epoxy prepreg layer, the aluminium lays of the fracture specimens were removed by the chemical method. The results show that the performance of the injured prepreg layers will decrease with the increase of the number of the ply. The DIC technique can be used to detect effectively the damage of the prepreg layers in GLARE laminates under tensile loading. Good agreement can be obtained between model predictions and test results.

Cite this article

TONG Anshi , XIE Liyang , BAI Enjun , BAI Xin , ZHANG Shijian , WANG Bowen . Test and prediction model of statics property of fiber metal laminates[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(11) : 221193 -221193 . DOI: 10.7527/S1000-6893.2017.221193

References

[1] 郭亚军, 吴学仁. 纤维金属层板疲劳裂纹扩速率与寿命预测的唯像模型[J]. 航空学报, 1998, 19(3):275-282. GUO Y J,WU X R. Phenomenological model for predicting fatigue crack growth in fiber reinforced metal laminates[J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(3):275-282(in Chinese).
[2] 陈琪, 关志东, 黎增山. GLARE层板性能研究进展[J]. 科技导报, 2013, 31(7):50-56. CHEN Q, GUAN Z D, LI Z S. Review of GLARE technology[J]. Technology Review, 2013, 31(7):50-56(in Chinese).
[3] 孟维迎, 谢里阳, 刘建中, 等. 玻璃纤维增强铝锂合金层板单峰过载疲劳寿命性能对比研究[J]. 航空学报, 2016, 37(5):1536-1543. MENG W Y, XIE L Y, LIU J Z, et al. Contrast study on fatigue life performance of glass fiber reinforced Al-Li alloy laminates under unimodal overload[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5):1536-1543(in Chinese).
[4] CHEN J L, SUN C T. Modeling of orthotropic elastic-plastic properties of ARALL laminates[J]. Composites Science & Technology, 1989, 36(4):321-337.
[5] XIA Y, WANG Y, ZHOU Y, et al. Effect of strain rate on tensile behavior of carbon fiber reinforced aluminum laminates[J]. Materials Letters, 2007, 61(1):213-215.
[6] KAWAI M, MORISHITA M, TOMURA S, et al. Inelastic behavior and strength of fiber-metal hybrid composite:Glare[J]. International Journal of Mechanical Sciences, 1998, 40(2-3):183-198.
[7] WU G, YANG J M. Analytical modelling and numerical simulation of the nonlinear deformation of hybrid fibre metal laminates[J]. Modelling & Simulation in Materials Science & Engineering, 2005, 13(3):413-425.
[8] CARRILLO J G, CANTWELL W J. Scaling effects in the tensile behavior of fiber-metal laminates[J]. Composites Science & Technology, 2007, 67(7):1684-1693.
[9] RAJKUMAR G R, KRISHNA M, NARASIMHAMURTHY H N, et al. Investigation of tensile and bending behavior of aluminum based hybrid fiber metal laminates[J]. Procedia Materials Science, 2014(5):60-68.
[10] 马宏毅, 李小刚, 李宏运. 玻璃纤维-铝合金层板的拉伸和疲劳性能研究[J]. 材料工程, 2006(7):61-64. MA H Y, LI X G, LI H Y. Tension and fatigue properties of glass fiber reinforced aluminumlaminates[J]. Journal of Materials Engineering, 2006(7):61-64(in Chinese).
[11] 廖建, 曹增强, 代瑛, 等. GLARE层板偏轴拉伸性能[J]. 塑性工程学报, 2007, 14(5):67-70. LIAO J, CAO Z Q, DAI Y, et al. The off-axis properties ofGLRAE plates[J]. Journal of Plasticity Engineering, 2007, 14(5):67-70(in Chinese).
[12] 王时玉. 纤维金属层板的制备及力学性能研究[D]. 哈尔滨:哈尔滨工业大学, 2012:9-28. WANG S Y. Preparation and mechanical properties of fiber metallaminates[D].Harbin:Harbin Institute of Technology, 2012:9-28(in Chinese).
[13] 王亚杰, 王波, 张龙, 等. 玻璃纤维-铝合金正交层板的拉伸性能研究[J]. 材料工程, 2015, 43(9):60-65. WANG Y J, WANG B, ZHANG L, et al. Tensile properties of glass giber reinforced aluminum orthorhombiclaminate[J]. Journal of Materails Engineering, 2015, 43(9):60-65(in Chinese).
[14] 杨文珂. Glare纤维金属层合板的机械性能仿真分析及其实验验证[D]. 长春:吉林大学, 2016:51-93. YANG W K. Experimental and numerical simulation on mechanical properties of glare fiber metal laminates[D]. Changchun:Jilin University, 2016:51-93(in Chinese).
[15] RAO P M, SUBBA RAO V. Estimating the failure strength of fiber metal laminates by using a hybrid degradation model[J]. Journal of Reinforced Plastics & Composites, 2010, 29(20):3058-3063.
[16] TAY T E, LIU G, TAN V B C, et al. Progressive failure analysis of composites[J]. Journal of Composite Materials, 2008, 42(18):1921-1966.
[17] TAN S C, PEREZ J. Progressive failure of laminated composites with a hole under compressive loading[J]. Journal of Reinforced Plastics & Composites, 1993, 12(10):1043-1057.
[18] TAN S C. A Progressive failure model for composite laminates containing openings[J]. Journal of Composite Materials, 1991, 25(5):556-577.
[19] CAMANHO P P. A progressive damage model for mechanically fastened Joints in composite laminates[J]. Journal of Composite Materials, 1999, 33(24):2248-2280.
[20] IRHIRANE E H, ECHAABI J, ABOUSSALEH M, et al. Matrix and fibre stiffness degradation of a quasi-isotrope graphite epoxy laminate under flexural bending test[J]. Journal of Reinforced Plastics & Composites, 2009, 28(2):201-223.
[21] CORTÉS P, CANTWELL W J. The prediction of tensile failure in titanium-based thermoplastic fibre-metal laminates[J]. Composites Science & Technology, 2006, 66(13):2306-2316.
[22] IACCARINO P, LANGELLA A, CAPRINO G. A simplified model to predict the tensile and shear stress-strain behaviour of fibre glass/aluminium laminates[J]. Composites Science & Technology, 2007, 67(9):1784-1793.
[23] PAN B, QIAN K, XIE H, et al. Topical review:Two-dimensional digital image correlation for in-plane displacement and strain measurement:A review[J]. Measurement Science & Technology, 2009, 20(6):152-154.
[24] HOULT N A, TAKE W A, LEE C, et al. Experimental accuracy of two dimensional strain measurements using digital image correlation[J]. Engineering Structures, 2013, 46(46):718-726.
[25] SOUSA A M R, XAVIER J, VAZ M, et al. Cross-correlation and differential technique combination to determine displacement Fields[J]. Strain, 2011, 47(S2):87-98.

Outlines

/