ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Numerical simulation of aerodynamic characteristics of CRM-WB configuration with support system and wing deformation
Received date: 2017-03-01
Revised date: 2017-05-31
Online published: 2017-05-31
Supported by
National Key Research and Development Program (2016YFB0200700)
Common Research Model (CRM) is the reference configuration selected by 4th-6th AIAA Drag Prediction Workshop (DPW).Statistical analyses of the numerical simulation results of aerodynamic characteristics from DPW IV and DPW V illustrate obvious difference between experimental and numerical data.To assess the influence of the support system and static aeroelastic deformation on the numerical simulation results of aerodynamic characteristics of CRM Wing-Body (CRM-WB) configuration,aerodynamic characteristics of CRM Wing-Body configuration with the Support system (CRM-WBS) are simulated with CFD method and Fluid-Structure Coupling (FSC) method.Compared with the CFD results of the CRM-WBS configuration without support system and the experimental data from the NASA Langley National Transonic Facility (NTF) wind tunnel,the CFD results of CRM-WBS configuration show that the support system can move the shock wave upward on the wing upper surface and decrease the lift coefficient,drag coefficient,and the nose-down pitching moment coefficient.The FSC numerical results of CRM-WBS configuration show that the static aeroelastic deformation mainly affects the shock wave position on the wing upper surface,decreases the negative pressure coefficient obviously before the shock wave on the outward part of the wing,and further decreases the lift coefficient,drag coefficient and nose-down pitching moment coefficient.Numerical simulation results of aerodynamic characteristics of CRM-WBS configuration and static aeroelastic deformation agree more with the experimental results.
WANG Yuntao , SUN Yan , MENG Dehong , ZHANG Shujun , YANG Xiaochuan . Numerical simulation of aerodynamic characteristics of CRM-WB configuration with support system and wing deformation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(10) : 121202 -121202 . DOI: 10.7527/S1000-6893.2017.121202
[1] VASSBERG J C, DEHAAN M A, RIVERS S M, et al. Development of a common research model for applied CFD validation studies:AIAA-2008-6919[R]. Reston, VA:AIAA, 2008.
[2] RIVERS M B, DITTBEMER A. Experimental investigation of the NASA common research model in the NASA Langley transonic facility and NASA Ames 11-ft transonic wind tunnel (invited):AIAA-2011-1126[R]. Reston, VA:AIAA, 2011.
[3] RIVERS M B, RUDNIK R, QUEST J. Comparison of the NASA common research model European transonic wind tunnel test data to NASA test data:AIAA-2015-1093[R]. Reston, VA:AIAA, 2015.
[4] VASSBERG J C, TINOCO E N, MANI M, et al. Summary of the fourth AIAA computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2014, 51(4):1070-1089.
[5] LEVY D W, LAFLIN K R, TINOCO E N, et al. Summary of data from the fifth computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2014, 51(4):1194-1213.
[6] LEVY D W, VASSBERG J C, WAHLS R A, et al. Summary of data from the first AIAA CFD Drag Prediction Workshop[J]. Journal of Aircraft, 2003, 40(5):875-882.
[7] LAFLIN K R, VASSBERG J C, WAHLS R A, et al. Summary of data from the second AIAA CFD drag prediction workshop[J]. Journal of Aircraft, 2005, 42(5):1165-1178.
[8] VASSBERG J C, TINOCO E N, MANI M, et al. Abridged summary of the third AIAA CFD drag prediction workshop[J]. Journal of Aircraft, 2008, 45(3):781-798.
[9] HUE D. CFD investigation on the DPW-5 configuration with measured experimental wing twist using the elsA slover and the far-field approach:AIAA-2013-2508[R]. Reston, VA:AIAA, 2013.
[10] KEYE S, BRODERSEN O, RIVERS M B. Investigation of aeroelastic effects on the NASA common research model[J]. Journal of Aircraft, 2014, 51(4):1323-1330.
[11] 王运涛, 张书俊, 孟德虹. DPW4翼/身/平尾组合体的数值模拟[J]. 空气动力学学报, 2013, 31(6):739-744. WANG Y T, ZHANG S J, MENG D H. Numerical simulation and study for DPW4 wing/body/tail[J]. Acta Aerodynamica Sinica, 2013, 31(6):739-744(in Chinese).
[12] 王运涛, 李伟, 李松, 等. 梯形翼风洞试验模型数值模拟技术研究[J].航空学报, 2016,37(4):1159-1165. WANG Y T, LI W, LI S, et al. Numerical simulation of the trapezoidal wing wind tunnel model[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1159-1165(in Chinese).
[13] VAN LEER B. Towards the ultimate conservation difference scheme Ⅱ, monoticity and conservation combined in a second order scheme[J]. Journal of Computational Physics, 1974, 14(4):361-370.
[14] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8):1598-1605.
[15] CHEN R F, WANG Z J. Fast, block lower-upper Symmetric Gauss-Seidel scheme for arbitrary grids[J]. AIAA Journal, 2000, 38(12):2238-2245.
[16] HARDER R L, DESMARAIS R N. Interpolation using surface splines[J]. Journal of Aircraft, 1972, 9(2):189-191.
[17] 孙岩, 邓小刚, 王运涛, 等. RBF_TFI结构动网格技术在风洞静气动弹性修正中的应用[J]. 工程力学, 2014, 31(10):228-233. SUN Y, DENG X G, WANG Y T, et al. Application of structural dynamic grid method based on RBF_TFI on wind tunnel static aero-elastic modification[J]. Engineering Mechanics, 2014, 31(10):228-233(in Chinese).
[18] RENDALL T C S, ALLEN C B. Efficient mesh motion using radial basis functions with data reduction algorithms[J]. Journal of Computational Physics, 2009, 228(17):6231-6249.
[19] SONI B K. Grid generation for internal flow configuration[J]. Computers & Mathematics with Applications, 1992, 24(5-6):191-201.
[20] HEEG J, CHWALOWSKI P, SCHUSTER D, et al. Overview of the aeroelastic predication workshop:AIAA-2013-0783[R]. Reston, VA:AIAA, 2013.
[21] RIVERS M B, HUNTER C A. Support system effects on the NASA common research model:AIAA-2012-0707[R]. Reston, VA:AIAA, 2012.
/
〈 | 〉 |