ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Numerical simulation and parameter analysis of temperature distribution of autoclave cured composite cylindrical structure
Received date: 2017-03-20
Revised date: 2017-05-27
Online published: 2017-05-27
The cylindrical structure is one of the most common structural form in spacecraft. During the autoclave process, the cylindrical parts are often arranged radially perpendicular to the radial direction of the autoclave, leading to uneven distribution of temperature in the cylindrical part. In this paper, a numerical simulation method is developed based on the software Fluent to predict distribution of temperature and curing degree in the cylindrical part during the autoclave process. The effectiveness of the simulation method is verified by comparing the results of experimental data and simulated data. Based on the simulated data, the effects of heating rate on the distribution of the temperature and curing degree in the cylindrical structure are analyzed. The final results show that the temperature difference caused by the structural characteristics is greater than that by heat transfer during the autoclave process of the cylindrical part. When the heating rate autoclave grows from 0.5 K/min to 5 K/min, the maximum differences between the windward and leeward in temperature and curing degree increase by 1.1 K and 2.08% respectively, indicating that heating rate does not have a significant influence on temperature and curing degree distribution. These results are helpful for the optimization of cylindrical structures during autoclave process.
XIANG Bingdong , LI Min , LI Yanxia , GU Yizhuo , ZHANG Zuoguang , LI Jianfang , LI Guiyang . Numerical simulation and parameter analysis of temperature distribution of autoclave cured composite cylindrical structure[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(11) : 421258 -421258 . DOI: 10.7527/S1000-6893.2017.421258
[1] 车剑飞, 黄洁雯, 杨娟, 等. 复合材料及其工程应用[M]. 北京:机械工业出版社, 2006:138-195. CHE J F, HUANG J W, YANG J, et al. Composite materials and its engineering application[M]. Beijing:China Machine Press, 2006:138-195(in Chinese).
[2] 顾轶卓, 李敏, 李艳霞, 等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8):2773-2797. GU Y Z, LI M, LI Y X, et al. Progress on manufacturing technology and process theory of aircraft composite structure[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2773-2797(in Chinese).
[3] 贾云超, 关志东, 李星, 等. 热压罐温度场分析与影响因素研究[J]. 航空制造技术, 2016(1/2):90-95. JIA Y C, GUAN Z D, LI X, et al. Analysis of temperature field distribution and study of influence factor in autoclave process[J]. Aeronautical Manufacturing Technology, 2016(1/2):90-95(in Chinese).
[4] 王永贵, 梁宪珠, 曹正华, 等. 热压罐工艺成型先进复合材料构件的温度场研究综述[J]. 玻璃钢/复合材料, 2009(3):81-85. WANG Y G, LIANG X Z, CAO Z H, et al. Review of the temperature field research of autoclave moulding for advanced composite components[J]. Fiber Reinforced Plastics/Composites, 2009(3):81-85(in Chinese).
[5] 王永贵, 梁宪珠, 薛向晨, 等. 热压罐工艺的传热分析和框架式模具温度场分布[J]. 航空制造技术, 2008(22):80-83. WANG Y G, LIANG X Z, XUE X C, et al. Analysis of heat transfer and temperature field distribution on frame tooling in autoclave process[J]. Aeronautical Manufacturing Technology, 2008(22):80-83(in Chinese).
[6] 张铖, 梁宪珠, 王永贵, 等. 热压罐工艺环境对于先进复合材料框架式成型模具温度场的影响[J]. 材料科学与工程学报, 2011, 29(4):547-553. ZHANG C, LIANG X Z, WANG Y G, et al. Rules of impact of autoclave environment on frame mould temperature field of advanced composites[J]. Journal of Materials Science and Engineering, 2011, 29(4):547-553(in Chinese).
[7] 岳广全, 张博明, 杜善义, 等. 热压罐成型工艺所用框架式模具的变形分析[J]. 复合材料学报, 2009, 26(5):148-152. YUE G Q, ZHANG B M, DU S Y, et al. Geometrical deformations of the framed-mould in autoclave processing for composite structures[J]. Acta Materiae Compositae Sinica, 2009, 26(5):148-152(in Chinese).
[8] 林家冠, 杨睿, 王廷霞, 等. 大型复合材料构件热压罐成型温度分析与均匀性改善研究[J]. 玻璃钢/复合材料, 2015(5):61-65. LIN J G, YANG R, WANG T X, et al. Large-scale composite curing temperature analysis and improvement in autoclave process[J]. Fiber Reinforced Plastics/Composites, 2015(5):61-65(in Chinese).
[9] 傅承阳. 飞机复合材料制件热压罐成型温度场模拟与改善方法[D]. 南京:南京航空航天大学, 2013. FU C Y. Temperature uniformity optimizing method of the aircraft composite parts in autoclave processing[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2013(in Chinese).
[10] 王俊敏, 郑志镇, 陈荣创, 等. 树脂基复合材料固化过程固化度场和温度场的均匀性优化[J]. 工程塑料应用, 2015, 43(4):55-61. WANG J M, ZHENG Z Z, CHEN R C, et al. Curing degree field and temperature field uniformity optimization during curing process of resin matrix composites[J]. Engineering Plastics Application, 2015, 43(4):55-61(in Chinese).
[11] 白树成, 王清海, 刘梦媛, 等. 大尺寸复合材料构件热压罐成型工艺温度场均匀性控制[C]//第十四届全国复合材料学术会议论文集, 2006:5. BAI S C, WANG Q H, LIU M Y, et al. The well-distributed temperature field control in large composite part autoclave process[C]//14th National Academic Conference on Composite Material, 2006:5(in Chinese).
[12] 张纪奎, 郦正能, 关志东, 等. 热固性复合材料固化过程三维有限元模拟和变形预测[J]. 复合材料学报, 2009, 26(1):174-178. ZHANG J K, LI Z N, GUAN Z D, et al. Three-dimensional finite element simulation and prediction for process-induced deformation of thermoset composites[J]. Acta Materiae Compositae Sinica, 2009, 26(1):174-178(in Chinese).
[13] ANDREW A J. An integrated model of the development of process-induced deformation in autoclave processing of composite structure[D]. Vancouver:The University of British Columbia, 1997.
[14] 李恒, 王德海, 钱夏庆. 环氧树脂固化动力学的研究及应用[J]. 玻璃钢/复合材料, 2013(4):44-51. LI H, WANG D H, QIAN X Q. Research of epoxy resin curing kinetics and its application[J]. Fiber Reinforced Plastics/Composites, 2013(4):44-51(in Chinese).
[15] 钱玉春, 陈拴发, 丛培良, 等. 环氧树脂体系固化反应动力学特征[J]. 郑州大学学报(工学版), 2012, 33(3):95-98. QIAN Y C, CHEN S F, CONG P L, et al, Curing kinetical characteristics of epoxy resin system[J], Journal of Zhengzhou University(Engineering Science), 2012, 33(3):95-98(in Chinese).
[16] 张竞, 黄培. 环氧树脂固化动力学研究进展[J]. 材料导报, 2009, 23(7):58-61,81. ZHANG J, HUANG P. Research advances inepoxy resin curing kinetics[J]. Materials Review, 2009, 23(7):58-61,81(in Chinese).
[17] 陈晓春, 朱颖心, 王元. 零方程模型用于空调通风房间气流组织数值模拟的研究[J]. 暖通空调, 2006, 36(8):19-24. CHEN X C, ZHU Y X, WANG Y. Airflow simulation in air-conditioned and ventilated rooms with zero-equation model[J]. Heating Ventilating & Air Conditioning, 2006, 36(8):19-24(in Chinese).
[18] RAMADHYANI S. Two-equation and second-moment turbulence models for convective heat transfer[M]. Washington, D. C.:Taylor & Francis, 1997:171-199.
[19] FAROUK B, GUCERI S I.Laminar and turbulent natural convection in the annulus between horizontal concentric cylinders[J]. Journal of Heat Transfer, 1982, 104(4):631-636.
[20] 姚仲鹏, 王瑞君. 传热学[M]. 北京:北京理工大学出版社, 1995:299. YAO Z P, WANG R J. Heat transfer[M]. Beijing:Beijing Institute of Technology Press, 1995:299(in Chinese).
[21] 李承花, 张奕, 左琴华, 等. 差式扫描量热仪的原理与应用[J]. 分析仪器, 2015(4):88-94. LI C H, ZHANG Y, ZUO Q H, et al. The principle and its application of differential scanning calorimeter[J]. Analytical Instrumentation, 2015(4):88-94(in Chinese).
[22] 胡玉华, 吐伟, 汪梅影, 等. 差示扫描量热仪(DSC)测定液体比热的研究[C]//2012大连润滑油技术经济论坛论文集, 2012:281-284. HU Y H, TU W, WANG M Y, et al. The study on determination of specific heat of liquid by DSC[C]//2012 Dalian Lubricants Technical and Economic Forum, 2012:281-284(in Chinese).
/
〈 | 〉 |