ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Best wind speed of ground air conditioning system based on PMV-PPD
Received date: 2016-12-30
Revised date: 2017-04-06
Online published: 2017-05-03
Supported by
Joint Fund of the National Natural Science Foundation of China and the Civil Aviation Administration of China (U1433107);Natural Science Foundation of Tianjin (13JCYBJC42300)
To address poor cabin comfort and energy efficiency caused by constant-velocity air supply of ground air conditioning, the cabin simulation model for Boeing737 is built by CFD method. The size of the simulation cabin is the same as that of Boeing737. Validity of the model is verified by laboratory experiments. Based on this model, the effects of different air supply velocity on the temperature field and wind velocity field are simulated. The values of wind speed and temperature are used to calculate the PMV and PPD at the sample points. The relationship between the ground air conditioning air supply velocity and the PPD is also fitted by the Gaussian fitting curve method. The best air supply velocity range is obtained to meet the thermal comfort requirement, providing basis for energy-saving of ground air conditioning.
LIN Jiaquan , LI Wanwan . Best wind speed of ground air conditioning system based on PMV-PPD[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(8) : 121089 -121089 . DOI: 10.7527/S1000-6893.2017.121089
[1] 崔沈夷. 飞机地面空调的选用及其节能意义[J]. 暖通空调, 2013, 43(7):30-36. CUI S Y. Selection of pre-conditioned air unit and energy saving significance[J]. Heating Ventilating & Air Conditioning, 2013, 43(7):30-36(in Chinese).
[2] 林美娜, 赵薰, 林运龄. 某国际机场飞机地面空调机组的研制及其关键技术[J]. 制冷与空调, 2014, 14(10):75-78. LIN M N, ZHAO X, LIN Y L. Development of PCA for one international airport and its key technology[J]. Refrigeration and Air-conditioning, 2014, 14(10):75-78(in Chinese).
[3] 朱明勇, 招启军, 王博. 基于CFD和混合配平算法的直升机旋翼地面效应模拟[J]. 航空学报, 2016, 37(8):2539-2551. ZHU M Y, ZHAO Q J, WANG B. Simulation of helicopter rotor in ground effect based on CFD method and hybrid trim algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2539-2551(in Chinese).
[4] 陈琦, 郭勇颜, 谢昱飞, 等. PID控制器与CFD的耦合模拟技术研究及应用[J]. 航空学报, 2016, 37(8):2507-2516. CHEN Q, GUO Y Y, XIE Y F, et al. Research and application of coupled simulation techniques of PID controller and CFD[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2507-2516(in Chinese).
[5] SEMPEY A, INARD C, GHIAUS C, et al. Fast simulation of temperature distribution in air conditioned rooms by using proper orthogonal decomposition[J]. Building and Environment, 2009, 44(2):280-289.
[6] 赵树恩, 朱冰, 王荣, 等. 太阳辐射对汽车舱内热环境舒适性的影响研究与改善[J]. 流体机械, 2016, 44(7):70-76. ZHAO S E, ZHU B, WANG R, et al. Study of influence on the comfort of vehicle cabin thermal environment and improve cabin thermal environment comfort[J]. Fluid Machinery, 2016, 44(7):70-76(in Chinese).
[7] MAZUMDAR S, CHEN Q Y. Response of contaminant detection sensors and sensor systems in a commercial aircraft cabin[C]//Proceedings of the 10th International IBPSA Conference(Building Simulation 2007), 2007:854-861.
[8] DYGERT R K, DANG T Q. Experimental validation of local exhaust strategies for improved IAQ in aircraft cabins[J]. Building and Environment, 2012, 47(1):76-88.
[9] FIŠER J, JÍCHA M. Impact of air distribution system on quality of ventilation in small aircraft cabin[J]. Building and Environment, 2013, 69(11):171-182.
[10] 孙贺江, 吴尘, 安璐. 大型客机座舱混合送风形式的数值模拟[J]. 应用力学学报, 2013, 30(3):439-444. SUN H J, WU C, AN L. Numerical study of mixing ventilation systems in commercial aircraft cabin[J]. Chinese Journal of Applied Mechanics, 2013, 30(3):439-444(in Chinese).
[11] YOU R Y, CHEN J, SHI Z, et al. Experimental and numerical study of airflow distribution in an aircraft cabin mock-up with a gasper on[J]. Journal of Building Performance Simulation, 2015, 9(5):555-566.
[12] 刘俊杰, 李炳烨, 裴晶晶, 等. 不同季节飞机客舱环境的主客观实验研究[J]. 天津大学学报(自然科学与工程技术版), 2015, 48(2):103-110. LIU J J, LI B Y, PEI J J, et al. Subjective and objective experimental study of cabin environment in different seasons[J]. Journal of Tianjin University (Science and Technology), 2015, 48(2):103-110(in Chinese).
[13] ZHANG T F, CHEN Q Y. Novel air distribution systems for commercial aircraft cabins[J]. Building and Environment, 2007, 42(4):1675-1684.
[14] 孙贺江, 李卫娟, 杨斌. 客机座舱新型个性座椅送风系统的数值仿真[J]. 天津大学学报(自然科学与工程技术版), 2013, 46(1):16-21. SUN H J, LI W J, YANG B. Numerical simulation of a novel personalized air distribution system for commercial aircraft cabins[J]. Journal of Tianjin University (Science and Technology), 2013, 46(1):16-21(in Chinese).
[15] ZHANG T F, LI P H, WANG S G. A personal air distribution system with air terminals embedded in chair armrests on commercial airplanes[J]. Building and Environment, 2012, 47(1):89-99.
[16] 孙智, 孙建红, 赵明, 等. 基于改进PMV指标的飞机驾驶舱热舒适性分析[J]. 航空学报, 2015, 36(3):819-826. SUN Z, SUN J H, ZHAO M, et al. Analysis of thermal comfort in aircraft cockpit based on the modified PMV index[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):819-826(in Chinese).
[17] SARBU I, PACURAR C. Experimental and numerical research to assess indoor environment quality and schoolwork performance in university classrooms[J]. Building and Environment, 2015, 93(P2):141-154.
[18] YANG L, YAN H Y, LAM J C. Thermal comfort and building energy consumption implications-A review[J]. Applied Energy, 2014, 115(4):164-173.
[19] 孙贺江, 安璐, 冯壮波, 等. 客机驾驶舱流场CFD模拟与热舒适性分析[J]. 天津大学学报(自然科学与工程技术版), 2014, 47(4):298-303. SUN H J, AN L, FENG Z B, et al. CFD simulation and thermal comfort analysis in an airliner cockpit[J]. Journal of Tianjin University (Science and Technology), 2014, 47(4):298-303(in Chinese).
[20] CHEN Q Y. Comparison of different k-ε models for indoor air flow computations[J]. Numerical Heat Transfer, Part B:Fundamentals, 1995, 28(3):353-369.
[21] 黄衍, 段然, 李炳烨, 等. 飞机座舱个性送风下的气态污染物传播规律实例研究[J]. 应用力学学报, 2015, 32(4):586-592. HUANG Y, DUAN R, LI B Y, et al. Simulation of contaminant transportation in aircraft cabin with partly gaspers on[J]. Chinese Journal of Applied Mechanics, 2015, 32(4):586-592(in Chinese).
[22] American Society of Heating, Refrigerating, and Air-Conditioning Engineers. ANSI/ASHRAE Standard 161-2007 Air quality within commercial aircraft[S]. Atlanta:American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 2007.
[23] American Society of Heating, Refrigerating and air-conditioning engineers. ANSI/ASHRAE Standard 55-2004 Thermal environmental conditions for human occupancy[S]. Atlanta:American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 2004.
/
〈 | 〉 |