Fluid Mechanics and Flight Mechanics

Propagation property of flame and pressure wave in rotating detonation engine

  • XU Can ,
  • MA Hu ,
  • LI Jian ,
  • DENG Li ,
  • YU Ling
Expand
  • 1. School of Mechanical and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
    2. Shanghai Aerospace Power Technology Reasearch Institute, Shanghai 201109, China

Received date: 2017-03-09

  Revised date: 2017-04-19

  Online published: 2017-04-17

Supported by

National Natural Science Foundation of China (51606100);Natural Science Foundation of Jiangsu Province (BK20150782);the Fundamental Research Funds for Central Universities (30915118836)

Abstract

Experiments are conducted on non-premixed H2/Air Rotating Detonation Engine (RDE) to study the propagation property of the flame and pressure wave in the working process of the RDE. Ion probes, high-frequency pressure transducers and high speed camera are used simultaneously to measure the flame and instantaneous static pressure signal. Based on the ion current curve, pressure curve and high speed photography, the process from ignition to the formation of stable rotating detonation wave is analyzed. The collision of combustion wave and the development process of flame and pressure wave are observed. It can be concluded that the flame is coupling with the pressure wave in the stable working stage of the RDE. The average propagation velocity and average pressure peak of the rotating detonation wave obtained in the experiment are much smaller than the theoretical C-J (Chapman-Jouguet) values, and explanation to this phenomenon is given based on the analysis of the characteristics of the ion current curve. The effects of fresh reactant injection on the point near the inlet of combustion chamber are more significant than the further ones. Additionally, the shut down process also characterizes the coupling of the flame and pressure wave, the ion current peak, pressure peak and instantaneous velocity of pressure wave continue to decline till extinction. These research conclusions may provide some reference to the understanding of the initiation and propagation mechanism of the rotating detonation wave of the RDE.

Cite this article

XU Can , MA Hu , LI Jian , DENG Li , YU Ling . Propagation property of flame and pressure wave in rotating detonation engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(10) : 121226 -121226 . DOI: 10.7527/S1000-6893.2017.121226

References

[1] BYKOVSKⅡ F A, ZHDAN S A, VEDERNIKOV E F. Continuous spin detonation of fuel-air mixtures[J].Combustion Explosion & Shock Waves, 2006, 42(4):463-471.
[2] NAOUR B L, FALEMPIN F, MIQUEL F. Recent experiment results obtained on continuous detonation wave engine:AIAA-2011-2235[R]. Reston, VA:AIAA, 2011.
[3] LEVI M T, FREDERICK R S. Buildup and operation of a rotating detonation engine:AIAA-2011-0602[R]. Reston, VA:AIAA, 2011.
[4] RUSSO R M, KING P I, SCHAUER F R, et al. Characterization of pressure rise across a continuous detonation engine:AIAA-2011-6046[R]. Reston, VA:AIAA, 2011.
[5] SCHWER D A, KAILASANATH K. Effect of low pressure ratio on exhaust plumes of rotating detonation engines:AIAA-2014-3901[R]. Reston, VA:AIAA, 2014.
[6] BURR J, YU K H. Detonation reignition within a rotating detonation engine:AIAA-2016-1202[R]. Reston, VA:AIAA, 2016.
[7] STECHMANN D, HEISTER S D, SARDESHMUKH S. High-pressure rotating detonation engine testing and flameholding analysis with hydrogen and natural gas:AIAA-2017-1931[R]. Reston, VA:AIAA, 2017.
[8] RANKIN B A, RICHARDSON D R, CASWELL A W, et al. Chemiluminescence imaging of an optically accessible non-pre-mixed rotating detonation engine[J]. Combustion and Flame, 2017, 176:12-22.
[9] WANG Y H, WANG J P. Coexistence of detonation with deflagration in rotating detonation engines[J]. International Journal of Hydrogen Energy,2016,41:14302-14309.
[10] YANG C L, WU X S, MA H, et al. Experimental research on initiation characteristics of a rotating detonation engine[J]. Experimental Thermal and Fluid Science, 2016, 71:154-163.
[11] 徐雪阳, 武晓松, 卓长飞, 等. 非预混喷注对旋转爆震发动机影响的数值研究[J]. 航空学报, 2016, 37(4):1184-1195. XU X Y, WU X S, ZHUO C F, et al. Numerical simulation of injection schemes with separate supply of fuel and oxidizer effects on rotating detonation engine[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1184-1195(in Chinese).
[12] 王超, 刘卫东, 刘世杰,等. 吸气式连续旋转爆震与来流相互作用[J]. 航空学报, 2016, 37(5):1411-1418. WANG C, LIU W D, LIU S J, et al. Interaction of air-breathing continuous rotating detonation with inflow[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5):1411-1418(in Chinese).
[13] LEE J H S. 爆震现象[M]. 林志勇, 吴海燕, 林伟, 译. 北京:国防工业出版社, 2013:62-64. LEE J H S. The detonation phenomenon[M]. LIN Z Y, WU H Y, LIN W, translated. Beijing:National Defence Industry Press, 2013:62-64(in Chinese).
[14] ZDENEK J S, ANTHENIEN R A. Ion based high-temperature pressure sensor:AIAA-2004-0470[R]. Reston, VA:AIAA, 2004.
[15] KOWALKOWSKI M, MATSUTOMI Y, HEISTER S. Flame sensing in pulsed combustion using ion probes, diodes and visual indications:AIAA-2009-4945[R]. Reston, VA:AIAA, 2009.
[16] FROLOV S M, AKSENOV V S, IVANOV V S, et al. Large-scale hydrogen-air continuous detonation combustor[J]. International Journal of Hydrogen Energy, 2015, 40:1616-1623.
[17] GEORGE A S, DRISCOLL R, ANAND V, et al. Development of a rotating detonation engine facility at the University of Cincinnatia:AIAA-2015-0635[R]. Reston, VA:AIAA, 2015.
[18] 潘慕绚, 黄金泉, 郭伟, 等. 脉冲爆震发动机高温压力测量方法[J]. 推进技术, 2009, 30(3):355-359. PAN M X, HUANG J Q, GUO W, et al. Pressure measurement method under high temperature for pulse detonation engine[J]. Journal of Propulsion Technology, 2009, 30(3):355-359(in Chinese).
[19] 张彭岗, 何小民, 李建中, 等. 爆震管内波与火焰相互作用机理实验[J]. 航空动力学报, 2007, 22(10):1617-1621. ZHANG P G, HE X M, LI J Z, et al. Experimental study on mechanism of shock-flame interactions in deronation tubes[J]. Journal of Aerospace Power, 2007, 22(10):1617-1621(in Chinese).
[20] 陈先锋, 孙金华, 姚礼殷, 等. Tulip火焰形成过程中的细微结构特性[J]. 燃烧科学与技术, 2008, 14(4):350-354. CHEN X F, SUN J H, YAO L Y, et al. Characteristics of fine structure during Tulip flame forming[J]. Journal of Combustion Science and Technology, 2008, 14(4):350-354(in Chinese).

Outlines

/