ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Control strategy optimization of dynamic conversion procedure of tilt-rotor aircraft
Received date: 2016-10-19
Revised date: 2016-11-25
Online published: 2017-03-28
Supported by
National Natural Science Foundation of China (11672128)
The optimal control theory is applied to investigate the optimal dynamic conversion procedure of tilt-rotor aircraft to minimize the performance index described as the weighted sum of time consumed, variation of flight attitude and pilot workload. A flight dynamic model is built to extend the basic longitudinal rigid-body flight dynamic model with mixed control equations. The rates of pilot control sticks are set as the control variables to avoid jump discontinuities of controls in control strategy optimization. The dynamic conversion procedure is transformed into a dynamic optimal control problem with an appropriate performance index. The optimal control problem is formulated into a nonlinear programming problem and solved by a sparse sequential quadratic programming. XV-15 tilt-rotor aircraft is taken as the sample for the demonstration of conversion and reconversion. The results indicate that the variations of state variables are in good agreement with the data from flight simulation, and the variations of pitch attitude and pilot controls are relatively more gentle. The optimal control theory can be applied to investigate the optimal dynamic conversion procedure.
YAN Xufei , CHEN Renliang . Control strategy optimization of dynamic conversion procedure of tilt-rotor aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(7) : 520865 -520865 . DOI: 10.7527/S1000-6893.2017.520865
[1] 王奇, 吴文海. 一种非线性自适应切换控制混合方法及其在倾转旋翼机上的应用[J]. 航空学报, 2015, 36(10): 3359-3369. WANG Q, WU W H. A nonlinear adaptive switching control blending method and its application to tiltrotor[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10): 3359-3369 (in Chinese).
[2] 夏青元, 徐锦法, 金开保. 倾转旋翼飞行器的建模和操纵分配策略[J]. 航空动力学报, 2013, 28(9): 2016-2028. XIA Q Y, XU J F, JIN K B. Tilt-rotor aircraft modeling and its manipulation assignment strategy[J]. Journal of Aerospace Power, 2013, 28(9): 2016-2028 (in Chinese).
[3] 陈永, 龚华军, 王彪. 倾转旋翼机过渡段纵向姿态控制技术研究[J]. 飞行力学, 2011, 29(1): 30-33. CHEN Y, GONG H J, WANG B. Research on longitudna1 attitude contro1 technology of tilt rotor during transition[J]. Flight Dynamics, 2011, 29(1): 30-33 (in Chinese).
[4] PU H Z, ZHEN Z Y, GAO C. Tiltrotor aircraft attitude control in conversion mode based on optimal preview control[C]//Guidance, Navigation and Control Conference. Piscataway, NJ: IEEE Press, 2014: 1544-1548.
[5] RYSDYK R T, CALISE A J. Adaptive model inversion flight control for tilt-rotor aircraft[J]. Journal of Guidance, Control, and Dynamics, 1999, 22(3): 402-407.
[6] BRICK S, FISCHER D. CV-22 osprey flight path cueing flight director system[C]//AHS Annual Forum Proceedings. Fairfax, VA: AHS, 1998: 251-255.
[7] KLEIN P D, NICKS C O. Flight director and approach profile development for civil tiltrotor terminal area operations[C]//AHS 54th International Annual Forum. Fairfax, VA: AHS, 1998: 1120-1133.
[8] CALISE A J, RYSDYK R. Research in nonlinear flight control for tiltrotor aircraft operating in the terminal area: NASA CR-203112[R]. Washington, D.C.: NASA, 1996.
[9] MARR R L, RODERICK W E B. Handling qualities evaluation of the XV-15 tilt rotor aircraft[J]. Journal of the American Helicopter Society, 1975, 20(2): 23-33.
[10] KIM C J, SUNG S, PARK S H, et al. Numerical time-scale separation for rotorcraft nonlinear optimal control analyses[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(2): 658-673.
[11] BOTTASSO C L, CROCE A, LEONELLO D, et al. Optimization of critical trajectories for rotorcraft vehicles[J]. Journal of the American Helicopter Society, 2005, 50(2): 165-177.
[12] JHEMI A A, CARLSON E B, ZHAO Y J, et al. Optimization of rotorcraft flight following engine failure[J]. Journal of the American Helicopter Society, 2004, 49(2): 117-126.
[13] CARLSON E B, ZHAO Y J. Optimal city-center takeoff operation of tiltrotor aircraft in one engine failure[J]. Journal of Aerospace Engineering, 2004, 17(1): 26-39.
[14] CARLSON E B, ZHAO Y J. Prediction of tilt-rotor height-velocity diagrams using optimal control theory[J]. Journal of Aircraft, 2003, 40(5): 896-905.
[15] CARLSON E B, ZHAO Y J. Optimal short takeoff of tiltrotor aircraft in one engine failure[J]. Journal of Aircraft, 2002, 39(2): 280-289.
[16] ZHAO Y, CARLSON E, JHEMI A, et al. Optimization of rotorcraft flight in engine failure[C]//AHS Annual Forum Proceedings. Fairfax, VA: AHS, 2000: 523-536.
[17] CARLSON E B, ZHAO Y J, CHEN R T N. Optimal trajectories for tiltrotor aircraft in total power failure[C]//AHS 54th International Annual Forum. Fairfax, VA: AHS, 1998: 1368-1380.
[18] FERGUSON S W. A mathematical model for real time flight simulation of a generic tilt rotor aircraft: NASA CR-166536[R]. Washington, D.C.: NASA, 1988.
[19] FERGUSON S W. Development and validation of a simulation for a generic tilt-rotor aircraft: NASA CR-166537[R]. Washington, D.C.: NASA, 1989.
[20] 曹芸芸, 陈仁良. 倾转旋翼飞行器发动机短舱倾转角度-速度包线分析[J]. 航空动力学报, 2011, 26(10): 2174-2180. CAO Y Y, CHEN R L. Investigation on nacelle of conversion envelope analysis method of tiltrotor aircraft[J]. Journal of Aerospace Power, 2011, 26(10): 2174-2180 (in Chinese).
[21] GILL P E, MURRAY W, SAUNDERS M A. User’s guide for SNOPT version 7: Software for large-scale nonlinear programming[D]. San Diego: University of California, 2007: 4-29.
/
〈 |
|
〉 |