ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Dynamic response of aircraft tire bursting debris under internal pressure
Received date: 2016-12-06
Revised date: 2017-02-13
Online published: 2017-03-13
Supported by
The National Key Research and Development Program of China (2016YFC0801501);Cooperation Project with Aviation Industry Corporation of China
When the aircraft tire bursts, the velocity of the debris will be significantly increased because of the impact of internal pressure, rather than remain consistent with that of the tire in landing as specified by airworthiness standards. The model for dynamic response of bursting debris under internal pressure releasing is simulated by using dynamic grid and user defined function in Fluent, and the dynamic response program is coded by using the user defined function. Tire bursting failure is assumed to be caused by previous defects of the tire, and the dynamic process of debris can be decomposed into two phases:acceleration phase under the impact of internal pressure releasing, and deceleration motion phase under air resistance. The real-time pressure difference between both sides of debris is regarded as the only power source of the simplified physical burst model for analysis of the velocity of debris, the flow field pressure and velocity changes affected by internal pressure. The reduction model makes up the deficiency that previous mathematical models do not take into account the balance of internal and external pressure. The model can provide numerical reference for predicting the energy of debris after bursting and the energy of bursting airflow, and can thus help with the proposal of corresponding safety precautions.
Key words: aircraft tire; bursting debris; fluid-solid coupling; CFD; user defined function
ZHANG Fan , ZHENG Jinyang , MA Li . Dynamic response of aircraft tire bursting debris under internal pressure[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(8) : 221032 -221032 . DOI: 10.7527/S1000-6893.2017.221032
[1] 龚荣亮. 飞机轮胎的结构及常见故障探究[J]. 中国高新技术企业, 2011(27):81-82. GONG R L. Aircrafttire structure and common faults[J]. China High Technology Enterprises, 2011(27):81-82(in Chinese).
[2] 张建敏. 飞机轮胎爆破模式浅析[J]. 力学季刊, 2014, 35(1):139-148. ZHANG J M. A brief study on damaging effects of aeroplane tire and wheel failures[J]. Chinese Quarterly of Mechanics, 2014, 35(1):139-148(in Chinese).
[3] 周易之, 舒平. 起飞阶段冲偏出跑道事故预防分析[J]. 中国安全科学学报, 2009, 19(1):38-44. ZHOU Y Z, SHU P. Analysis on prevention of runway overrun/excursion accident during takeoff[J]. China Safety Science Journal, 2009, 19(1):38-44(in Chinese).
[4] 周应求. 航空轮胎爆破的原因分析及其预防措施[J]. 化工新型材料, 1980(10):1-6. ZHOU Y Q. Analysis and preventive measures of aviation tire blasting[J]. New Chemical Materials, 1980(10):1-6(in Chinese).
[5] 霍志勤, 罗帆. 近十年中国民航事故及事故征候的统计分析[J]. 中国安全科学学报, 2006, 16(12):65-71. HUO Z Q, LUO F. Statistic analysis on accidents and incidents in the last decade in China civil aviation[J]. Chinese Safety Science Journal, 2006, 16(12):65-71(in Chinese).
[6] HEFNY A F, EID H O, AL-BASHIR M, et al. Blast injuries of large tyres:Case series[J]. International Journal of Surgery, 2010, 8(2):151-154.
[7] European Aviation Safety Agency. Notice of proposed amendment (NPA) 2013-02, Protection from debrisimpacts[S]. 2013.
[8] Joint Aviation Authorities. JAA temporary guidance material, TGM/25/08(issue2), Wheel and tire failuremodel[S]. 2002.
[9] 白杰, 董兴普, 王伟. 外来物损伤条件下航空轮胎爆破碎片产生机理及速度分析[J]. 橡胶工业, 2011, 58(11):658-661. BAI J, DONG X P, WANG W. Formation mechanism and speed of aircraft tire burst debris under FOD[J]. China Rubber Industry, 2011, 58(11):658-661(in Chinese).
[10] 黄喜平, 陆波, 曹丹青. 在飞机起落架轮胎爆破时主起落架系统安全性分析方法[J]. 流体传动与控制, 2013(5):22-24. HUANG X P, LU B, CAO D Q. Method of main landing gear system security analysis when airplane landing gear's tire is bursting[J]. Fluid Power Transmission and Control, 2013(5):22-24(in Chinese).
[11] 谢孟恺, 周昌明, 范平. 轮胎爆破下飞机液压能源系统安全性分析方法[J]. 航空科学技术, 2015, 26(9):46-49. XIE M K, ZHOU C M, FAN P. Aircraft hydraulic system safety analysis method for tire burst[J]. Aeronautical Science and Technology, 2015, 26(9):46-49(in Chinese).
[12] 李田. 高速列车流固耦合计算方法及动力学性能研究[D]. 成都:西南交通大学, 2012. LI T. Approaches and dynamic performances of high-speed train fluid-structure[D]. Chengdu:Southwest Jiaotong University, 2012(in Chinese).
[13] 邢景棠, 周盛, 崔尔杰. 流固耦合力学概述[J]. 力学进展, 1997, 27(1):20-39. XING J T, ZHOU S, CUI E J. A survey on the fluid-solid interaction mechanics[J]. Advances in Mechanics, 1997, 27(1):20-39(in Chinese).
[14] STEIN K, TEZDUYAR T E, BENNEY R. Automatic mesh update with the solid-extension mesh moving technique[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(21-22):2019-2032.
[15] 陈锋, 王春江, 周岱. 流固耦合理论与算法评述[J]. 空间结构, 2012, 18(4):55-63. CHEN F, WANG C J, ZHOU D. Review of theory and numerical methods of fluid-structure interaction[J]. Spatial Structures, 2012,18(4):55-63(in Chinese).
[16] WALL W A, GERSTENBERGER A, GAMNITZER P, et al. Large deformation fluid-structure interaction-Advances in ALE methods and new fixed grid approaches[C]//Lecture Notes in Computational Science and Engineering, 2006, 53:195-232.
[17] 何涛. 流固耦合新算法研究及其气动弹性应用[D]. 上海:上海交通大学, 2013. HE T. Novelpartitioned coupling algorithms for fluid-structure interaction with applications to aero elasticity[D]. Shanghai:Shanghai Jiao Tong University, 2013(in Chinese).
[18] 刘学强, 李青, 柴建忠, 等. 一种新的动网格方法及其应用[J]. 航空学报, 2008, 29(4):817-822. LIU X Q, LI Q, CHAI J Z, et al. A new dynamic grid algrithm and its application[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4):817-822(in Chinese).
[19] MURMAN S M, AFTOSMIS M J, BERGER M J. Implicit approaches for moving boundaries in a 3-D Cartesian method:AIAA-2003-1119[R]. Reston, VA:AIAA, 2003.
[20] LIEFVENDAHL M, TROENG C. Deformation and regeneration of the computational grid for CFD with moving boundaries:AIAA-2007-1458[R]. Reston, VA:AIAA, 2007.
[21] HASSAN O, MORGAN K, WEATHERILL N. Unstructured mesh methods for the solution of the unsteady compressible flow equations with moving boundary components[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2007, 365(1859):2531-2552.
[22] 周璇, 李水乡, 陈斌. 非结构动网格生成的弹簧-插值联合方法[J]. 航空学报, 2010, 31(7):1389-1395. ZHOU X, LI S X, CHEN B. Spring-interpolation approach for generating unstructured dynamic meshes[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7):1389-1395(in Chinese).
[23] FAST P, SHELLEY M J. A moving overset grid method for interface dynamics applied to non-Newtonian Hele-Shaw flow[J]. Journal of Computational Physics, 2004, 195(1):117-142.
[24] 辛颖. Fluent UDF方法在数值波浪水槽中的应用研究[D]. 大连:大连理工大学, 2013. XIN Y. Applicationof fluent UDF method in the study of numerical wave tank[D]. Dalian:Dalian University of Technology, 2013(in Chinese).
[25] 伍贻兆, 田书玲, 夏健. 基于非结构动网格的非定常流数值模拟方法[J]. 航空学报, 2011, 32(1):15-26. WU Y Z, TIAN S L, XIA J. Unstructured grid methods for unsteady flow simulation[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1):15-26(in Chinese).
[26] 杨小权, 杨爱明, 孙刚. 一种强耦合Spalart-Allmaras湍流模型的RANS方程的高效数值计算方法[J]. 航空学报, 2013, 34(9):2007-2018. YANG X Q, YANG A M, SUN G. An efficient numerical for coupling the RANS equations with Spalart-Allmaras turbulence model equation[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2007-2018(in Chinese).
[27] USA Federal Aviation Administration. FARS, PART25-airworthiness standards:Transport category airplanes[S]. 2000.
[28] 赵雪娥, 孟亦飞, 刘秀玉. 燃烧与爆炸理论[M]. 北京:化学工业出版社, 2011:194. ZHAO X E, MENG Y F, LIU X Y. Combustion and explosion theory[M]. Beijing:Chemical Industry Press, 2011:194(in Chinese).
/
〈 | 〉 |