ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Research progress of corner separation in axial-flow compressor
Received date: 2016-11-24
Revised date: 2017-01-21
Online published: 2017-03-03
Supported by
National Natural Science Foundation of China (51536006,11572257,51276148);Aeronautical Science Foundation of China (2015ZB53027)
Corner separation is a kind of three-dimensional separation that occurs commonly in the suction-endwall corner area of axial compressors. Corner separation and the associated flow losses and blockages will have negative effect on stability and efficiency of compressors, and will even develop into "corner stall" in severe cases. With the increase of stage loading of modern compressors, the negative effect of corner separation becomes so prominent as to seriously hinder the development of highly loaded compressors. Therefore, many active and passive flow control methods are widely applied to flow control of corner separation. Research progress of the mechanism of corner separation of the axial flow compressor is reviewed from three perspectives:influence of corner separation on performance of the axial flow compressor, flow field characteristics of corner separation and the criterion for corner stall. The influencing factors and the topological analysis of corner separation and the definition and judgment of corner stall are discussed. Research progress of seven flow control methods is reviewed, including three-dimensional blade design, fence/groove, vortex generator, non-axisymmetric endwall profiling, vortex generator jet, plasma aerodynamic actuation, and boundary layer suction/jet. Application of these methods too the suppression of corner separation is emphatically discussed, and the mechanism of these methods for suppression corner separation is given. The research status of corner separation is summarized. The shortcomings of current research are pointed out, and future development of this research field is described.
WU Yanhui , WANG Bo , FU Yu , LIU Jun . Research progress of corner separation in axial-flow compressor[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(9) : 520974 -520974 . DOI: 10.7527/S1000-6893.2017.620974
[1] HORLOCK J H, LEWIS J F, PERCIVAL P E, et al. Wall stall in compressor cascade[J]. Journal of Basic Engineering, 1966, 88(3):637-648.
[2] DENTON J D. Loss mechanisms in turbomachines[J]. Journal of Turbomachinery-transactions of the ASME, 1993, 115(4):621-656.
[3] BROICHHAUSEN K D, HARSTER P. Aerodynamic analysis of a two stage transonic compressor with variable stator vanes:90-GT-073[R]. New York:ASME, 1990.
[4] STRAFFORD B. The prevention of separation and flow reversal in the corners of compressor blade cascades[J]. Aeronautical Journal, 1973, 77(749):249-256.
[5] 王掩刚, 牛楠, 赵龙波, 等. 端壁抽吸位置对压气机叶栅角区分离控制的影响[J]. 推进技术, 2010, 31(4):433-437. WANG Y G, NIU N, ZHAO L B, et al. Effect on corner separation control for high load compressor cascade with different end-wall BLS position[J]. Journal of Propulsion Technology, 2010, 31(4):433-437(in Chinese).
[6] 郭爽, 陈绍文, 陆华伟, 等. 组合抽吸对大转角扩压叶栅性能的影响[J]. 航空动力学报, 2010, 25(12):2697-2703. GUO S, CHEN S W, LU H W, et al. Effect of compound boundary layer suction on the performance of a high-load diffusion compressor cascade with a large camber angle[J]. Journal of Aerospace Power, 2010, 25(12):2697-2703(in Chinese).
[7] 茅晓晨, 刘波, 曹志远, 等. 端壁射流对压气机叶栅角区分离控制的研究[J]. 推进技术, 2014, 35(12):1615-1622. MAO X C, LIU B, CAO Z Y, et al. Research on corner separation control for compressor cascade with end-wall jet flow[J]. Journal of Propulsion Technology, 2014, 35(12):1615-1622(in Chinese).
[8] 赵小虎, 吴云, 李应红, 等. 高负荷压气机叶栅分离结构及其等离子体流动控制[J]. 航空学报, 2012, 33(2):208-219. ZHAO X H, WU Y, LI Y H, et al. Separation structure and plasma flow control on highly loaded compressor cascade[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2):208-219(in Chinese).
[9] LEPOT I, MENGISTU T, HIERNAUX S, et al. Highly loaded LPC blade and non-axisymmetric hub profiling optimization for enhanced efficiency and stability:GT2011-46261[R]. New York:ASME, 2011.
[10] 李秋实, 杨春, 肖文富, 等. 端壁造型抑制角区失速的数值研究[J]. 自然科学进展, 2009, 19(5):537-543. LI Q S, YANG C, XIAO W F, et al. Numerical study on inhibition of corner stall by endwall contouring[J]. Progress in Natural Science, 2009, 19(5):537-543(in Chinese).
[11] 卢家玲, 楚武利, 胡书珍, 等. 端壁造型技术在亚声轴流压气机级中的应用[J]. 航空动力学报, 2009, 24(5):1101-1107. LU J L, CHU W L, HU S Z, et al. Application of endwall contour on subsonic axial flow compressor stage[J]. Journal of Aerospace Power, 2009, 24(5):1101-1107(in Chinese).
[12] HERGT A, MEYER R, ENGEL K. Effects of vortex generator application on the performance of a compressor cascade[J]. Journal of Turbomachinery, 2013, 135(3):021026.
[13] HAGE W, MEYER R, PASCHEREIT C. Control of secondary flow in a high loaded compressor stage by means of a groove structure on the sidewalls:AIAA-2007-4278[R]. Reston, VA:AIAA, 2007.
[14] DRING R P, JOSLYN H D, HARDIN L W. An investigation of axial compressor rotor aerodynamics[J]. Journal of Engineering for Power, 1982, 104(1):84-96.
[15] JOSLYN H D, DRING R P. Axial compressor stator aerodynamics[J]. Journal of Engine for Gas Turbine and Power, 1985, 107(2):485-493.
[16] SCHULZ H D, GALLUS H D. Experimental investigation of the three-dimensional flow in an annular compressor cascade[J]. Journal of Turbomachinery, 1988, 110(4):467-478.
[17] BARANKIEWICZ W S, HATHAWAY M D. Impact of variable-geometry stator hub leakage in a low speed axial compressor:98-GT-194[R]. New York:ASME, 1998.
[18] SAATHOFF H, STARK U. Endwall boundary layer separation in a single-stage axial-flow low-speed compressor and a high-stagger compressor cascade[J]. Forschung Auf Dem Gebiete Des Ingenieurwesens, 2000, 65(8):217-224.
[19] MA W, OTTAVY X, LU L P, et al. Experimental study of comer stall in a linear compressor cascade[J]. Chinese Journal of Aeronautics, 2011, 24(3):235-242.
[20] SCHULZ H D, GALLUS H D, LAKSHMINARAYANA B. Three-dimensional separated flow field in the endwall region of an annular compressor cascade in the presence of rotor-stator interaction:Part 1-Quasi-steady flow field and comparison with steady-state data[J]. Journal of Turbomachinary, 1990, 112(4):669-678.
[21] DONG Y, GALLIMORE S J, HODSON H P. Three-dimensional flows and loss reduction in axial compressors[J]. Journal of Turbomachinary, 1987, 109(3):354-360.
[22] SHABBIR A, CELESTINA M L, ADAMCZYK J J, et al. The effect of hub leakage flow on two high speed axial flow compressor rotors:97-GT-346[R]. New York:ASME, 1997.
[23] RIBI B, MEYER M P. Influence of gap between casing and variable stator blade on axial compressor performance:GT2008-50301[R]. New York:ASME, 2008.
[24] LEE C, SONG J, LEE S, et al. Effect of a gap between inner casing and stator blade on axial compressor performance:GT2010-22439[R]. New York:ASME, 2010.
[25] BOEHLE M, STARK U. A numerical investigation of the effect of end-wall boundary layer skew on the aerodynamic performance of a low aspect ratio, high turning compressor cascade:IMECE2007-44049[R]. New York:ASME, 2007.
[26] LI X J, CHU W L, WU Y H. Numerical investigation of inlet boundary layer skew in axial-flow compressor cascade and the corresponding non-axisymmetric end wall profiling[J]. Proceedings of the Institution of Mechanical Engineers Part A Journal of Power & Energy, 2014, 228(6):638-656.
[27] GALLUS H E, HAH C, SCHULZ H D. Experimental and numerical investigation of three-dimensional viscous flows and vortex motion inside an annular compressor blade row[J]. Journal of Turbomachinery, 1991, 113:198-206.
[28] HAH C, LOELLBACH J. Development of hub corner stall and its influence on the performance of axial compressor blade rows[J]. Journal of Turbomachinery, 1999, 121(1):67-77.
[29] WEBER A, SCHREIBER H A, FUCHS R, et al. 3-D transonic flow in a compressor cascade with shock-induced corner stall[J]. Journal of Turbomachinery, 2002, 124(3):358-366.
[30] GBADEBO S A, CUMPSTY N A, HYNES T P. Three-dimensional separations in axial compressors[J]. Journal of Turbomachinery, 2005, 127(2):331-339.
[31] KAN X X, LU H W. Topological characterization of vortex structures on a transonic compressor stator during the stall process[J]. Journal of Aerospace Engineering, 2016, 230(3):566-580.
[32] LEWIN E, KO?ULOVI? D, STARK U. Experimental and numerical analysis of Hub-corner stall in compressor cascades:GT2010-22704[R]. New York:ASME, 2010.
[33] ZHANG Y F, MAHALLATI A, BENNER M. Experimental and numerical investigation of corner stall highly-loaded compressor cascade:GT2014-27204[R]. New York:ASME, 2014.
[34] DE HALLER P. Das verhalten von tragflugelgittern in axialverdichtern und im windkana[J]. BWK Zeitschrift, 1953, 5(10):333-337.
[35] LIEBLEIN S, SCHWENK F C, BRODERICK R L. Diffusion factor for estimating losses and limiting blade loadings in axial-flow-compressor blade elements:NASA RM E53D01[R]. Washington, D.C.:NACA, 1953.
[36] LEI V M, SPAKOVSZKY Z S, GREITZER E M. A criterion for axial compressor hub-corner stall[J]. Journal of Turbomachinery, 2006, 130(3):475-486.
[37] YU X J, LIU B J. A prediction model for corner separation/stall in axial compressors:GT2010-22453[R]. New York:ASME, 2010.
[38] SMITH L H, YEH H. Sweep and dihedral effects in axial-flow turbomachinery[J]. Journal of Fluids Engineering, 1963, 85(3):401.
[39] SASAKI T, BREUGELMANS F. Comparison of sweep and dihedral effects on compressor cascade performance[J]. Journal of Turbomachinery, 1998, 120(3):454-463.
[40] WANG Z Q, SU J X, ZHONG J J. The effect of the pressure distribution in a three-dimensional flow field of a cascade on the type of curved blade:94-GT-409[R]. New York:ASME, 1994.
[41] WEINGOLD H D, NEUBERT R J, BEHLKE R F, et al. Bowed stators:an example of CFD applied to improve multistage compressor efficiency[J]. Journal of Turbomachinery, 1997, 119(2):161-168.
[42] GVMMER V, WENGER U, KAU H, et al. Using sweep and dihedral to control three-dimensional flow in transonic stators of axial compressors[J]. Journal of Turbomachinery, 2000, 123(1):40-48.
[43] ROY B, LAXMIPRASANNA P A, BORIKAR V, et al. Low speed studies of sweep and dihedral effects on compressor cascades:GT2002-30441[R]. New York:ASME, 2002.
[44] FISCHER A, RIESS W, SEUME J R. Performance of strongly bowed stators in a 4-stage high speed compressor:GT2003-38392[R]. New York:ASME, 2003.
[45] GALLIMORE S J, BOLGER J J, CUMPSTY N A, et al. The use of sweep and dihedral in multistage axial flow compressor blading-Part I:University research and methods development[J]. Journal of Turbomachinery, 2002, 124(4):33-47.
[46] GALLIMORE S J. The use of sweep and dihedral in multistage axial flow compressor blading-Part Ⅱ:Low and high-speed designs and test verification[J]. Journal of Turbomachinery, 2002, 124(4):49-59.
[47] WOOLLATT G, LIPPETT D, IVEY P C, et al. The design, development and evaluation of 3D aerofoils for high speed axial compressors:Part 2-Simulation and comparison with experiment:GT2005-68793[R]. New York:ASME, 2005.
[48] JI L C, SHAO W W, YI W L, et al. A model for describing the influences of SUC-EW dihedral angle on corner separation:GT2007-27618[R]. New York:ASME, 2007.
[49] 季路成, 田勇, 李伟伟, 等. 叶身/端壁融合技术研究[J]. 航空发动机, 2012, 38(6):5-10. JI L C, TIAN Y, LI W W, et al. Investigation on blended blade and endwall technique[J]. Aeroengine, 2012, 38(6):5-10(in Chinese).
[50] 季路成, 李嘉宾, 伊卫林. 第三代三维叶片技术思路分析[J]. 工程热物理学报, 2015, 36(5):989-994. JI L C, LI J B, YI W L.The way to the third generation of 3-D blades[J]. Journal of Engineering Thermophysics, 2015, 36(5):989-994(in Chinese).
[51] MVLLER R, SAUER H, VOGELER K, et al. Influencing the secondary losses in compressor cascades by a leading edge bulb modification at the endwall:GT2002-30442[R]. New York:ASME, 2002.
[52] 伊卫林, 唐方明, 陈志民, 等. 改善压气机端区流动的新方法——前缘边条叶片技术[J]. 航空动力学报, 2015, 30(7):1691-1698. YI W L, TANG F M, CHEN Z M, et al. New approach to improve the endwall flow of compressor-Leading edge strake blade technique[J]. Journal of Aerospace Power, 2015, 30(7):1691-1698(in Chinese).
[53] PRUMPER H. Application of boundary layer fences in turbomachinery[J]. AGARG Ograph, 1972, 164(Ⅱ-3):311-317.
[54] KAWAI T, SHINOKI S, Adachi T. Secondary flow control and loss reduction in a turbine cascade using endwall fences[J]. JSME International Journal, Series B, 1989, 32:375-387
[55] KAWAI T, SHINOKI S, ADACHI T. Visualization study of three-dimensional flows in a turbine cascade endwall region[J]. JSME International Journal, Series B, 1990, 33(2):256-264
[56] KAWAI T. Effect of combined boundary layer fences on turbine secondary flow and losses[J]. JSME International Journal, Series B, 1994, 37(2):377-384.
[57] MEYER W, BECHERT D W, HAGE W. Sekundär-strömungsbeeinflussung in axialen turbomaschinen zur verbesserung des stufenwirkungsgrades:vorhaben v1.2.11[R]. Köln-Porz:DLR, 2003.
[58] 钟兢军, 王会社, 刘慧娟, 等. 吸力面翼刀控制压气机叶栅二次流的实验研究[J]. 航空动力学报, 2002, 17(2):188-191. ZHONG J J, WANG H S, LIU H J, et al. The experimental investigation of using suction surface fences to control secondary flow in compressor cascade[J]. Journal of Aerospace Power, 2002, 17(2):188-191(in Chinese).
[59] 刘艳明, 钟兢军, 李海滨, 等. 不同长度端壁翼刀对压气机叶栅二次流影响的数值研究[J]. 航空动力学报, 2004, 19(5):765-769. LIU Y M, ZHONG J J, LI H B, et al. The influence of endwall wing fence length on secondary flow in compressor cascade[J]. Journal of Aerospace Power, 2004, 19(5):765-769(in Chinese).
[60] 田夫, 钟兢军, 孟丽艳. 不同周向位置端壁翼刀对压气机叶栅损失影响的实验研究[J]. 航空动力学报, 2005, 20(4):613-618. TIAN F, ZHONG J J, MENG L Y. Experimental investigation of the affect of endwall fence location on compressor cascade loss[J]. Journal of Aerospace Power, 2005, 20(4):613-618(in Chinese).
[61] 刘艳明, 钟兢军, 王保国, 等. 具有不同翼刀的压气机叶栅二次流结构分析[J]. 航空动力学报, 2008, 23(7):1240-1245. LIU Y M, ZHONG J J, WANG B G, et al. Analysis of secondary flow structures of compressor cascade with different fences[J]. Journal of Aerospace Power, 2008, 23(7):1240-1245(in Chinese).
[62] 杨凌, 钟兢军, 严红明. 压气机环形叶栅中应用吸力面翼刀的数值研究[J]. 工程热物理学报, 2010, 31(6):938-942. YANG L, ZHONG J J, YAN H M. Numerical investigation of annual compressor cascade with suction surface fences[J]. Journal of Engineering Thermophysics, 2010, 31(6):938-942(in Chinese).
[63] 田夫, 钟兢军. 压气机叶栅内不同高度端壁翼刀的实验[J]. 航空动力学报, 2010, 25(4):861-867. TIAN F, ZHONG J J. Experimental investigation on endwall fences with different height in compressor cascade[J]. Journal of Aerospace Power, 2010, 25(4):861-867(in Chinese).
[64] 刘艳明, 钟兢军, 李海滨, 等. 不同长度端壁翼刀对压气机叶栅二次流影响的数值研究[J]. 航空动力学报, 2004, 19(5):666-670. LIU Y M, ZHONG J J, LI H B, et al. Numerical investigation of the secondary flow control in an annual compressor of transonic cascade with different length endwall fences[J]. Journal of Aerospace Power, 2004, 19(5):660-670(in Chinese).
[65] LIN J C. Review of research on low-profile vortex generators to control boundary-layer separation[J]. Progress in Aerospace Sciences, 2002, 38(4-5):389-420.
[66] HIRT S, ZAMAN K, BENCIC T. Experimental study of boundary layer flow control using an array of ramp-shaped vortex generators:AIAA-2012-0741[R]. Reston, VA:AIAA, 2012.
[67] JOUBERT G, PAPE A L, HEINE B, et al. Vortical interactions behind deployable vortex generator for airfoil static stall control[J]. AIAA Journal, 2013, 51(1):240-252.
[68] ANDERSON B, TINAPPLE J, SURBER L. Optimal control of shock wave turbulent boundary layer interactions using micro-array actuation:AIAA-2006-3197[R]. Reston, VA:AIAA, 2006.
[69] BRENT J A. Single stage experimental evaluation of compressor blading with slots and vortex generators, part v-final report:NASA CR-72793[R]. Washington, D.C.:NASA, 1970.
[70] GAMERDINGER P M, SHREEVE R P. The effects of low-profile vortex generators on flow in a transonic fan-blade cascade:AIAA-1996-0250[R]. Reston, VA:AIAA, 1996.
[71] CHIMA R V. Computational modeling of vortex generators for turbomachinery:GT2002-30677[R]. New York:ASME, 2002.
[72] MEYER R, BECHERT D W, HAGE W. Secondary flow control on compressor blades to improve the performance of axial turbomachines[C]//Proceedings of 5th European conference on turbomachineryfluid dynamics and thermodynamics. Florence:European Turbomachinery Society, 2003:1-8.
[73] HERGT A, MEYER R, ENGEL K. The capability of influencing secondary flow in compressor cascades by means of passive and active methods[C]//Proceedings of 1st CEAS European Air and Space Conference. Brussels:DLR, 2007:1-10.
[74] HERGT A, MEYER R, MüLLER M W, et al. Loss reduction in compressor cascades by means of passive flow control:GT2008-50357[R]. New York:ASME, 2008.
[75] 袁忻, 刘火星. 压气机叶栅的涡发生器流动控制研究[J]. 航空科学技术, 2010(4):30-32. YUAN X, LIU H X. Flow control research in compressor cascade with vortex generator[J]. Aeronautical Science & Technology, 2010(4):30-32(in Chinese).
[76] 吴培根, 王如根, 郭飞飞, 等. 涡流发生器对高负荷扩压叶栅性能影响的机理分析[J]. 推进技术, 2016, 37(1):49-56. WU P G, WANG R G, GUO F F, et al. Mechanism analysis of effects of vortex generator on high-load compressor cascade[J]. Journal of Propulsion Technology, 2016, 37(1):49-56(in Chinese).
[77] DORFNER C, HERGT A, NICKE E, et al. Advanced non-axisymmetric endwall contouring for axial compressors by generating an aerodynamic separator-Part I:Principal cascade design and compressor application[J]. Journal of Turbomachinery, 2011, 133(2011):113-120.
[78] HERGT A, DORFNER C, STEINERT W, et al. Advanced non-axisymmetric endwall contouring for axial compressors by generating an aerodynamic separator-Part Ⅱ:Experimental and numerical cascade investigation[J]. Journal of Turbomachinery, 2009, 133(2011):121-131.
[79] REISING S, SCHIFFER H P. Non-axisymmetric end wall profiling in transonic compressors-Part I:Improving the static pressure recovery at off-design conditions by sequential hub and shroud end wall profiling:GT2009-59133[R]. New York:ASME, 2009.
[80] REISING S, SCHIFFER H P. Non-axisymmetric endwall profiling in transonic compressors. Part Ⅱ:Design study of a transonic compressor rotor using non-axisymmetric endwalls-optimization strategies and performance:GT2009-59134[R]. New York:ASME, 2009.
[81] HU S Z, LU X G, ZHANG H W, et al. Numerical investigation of a high-subsonic axial-flow compressor rotor with non-axisymmetric hub endwall[J]. Journal of Thermal Science, 2010, 19(1):14-20.
[82] CHU W L, LI X J, WU Y H, et al. Reduction of endwall loss in axial compressor by using non-axisymmetric profiled endwall:a new design approach based on endwall velocity modification[J]. Aerospace Science & Technology, 2016, 55(2016):76-91.
[83] WALLIS R A. The use of air jets for boundary layer control:Rept. 110[R]. Melbourne:Aeronautical Research Labs Melbourne, 1952.
[84] SCHOLZ P, CASPER M, ORTMANNS J, et al. Leading-edge separation control by means of pulsed vortex generator jets[J]. AIAA Journal, 2008, 46(4):837-846.
[85] SHUN S, AHMED N A. Airfoil separation control using multiple-orifice air-jet vortex generators[J]. Journal of Aircraft, 2011, 48(6):2164-2169.
[86] PRINCE S A, KHODAGOLIAN V. Low-speed static stall suppression using steady and pulsed air-jet vortex generators[J]. AIAA Journal, 2011, 49(3):642-654.
[87] SONDERGAARD R, RIVIR R B, BONS J P. Control of low-pressure turbine separation using vortex-generator jets[J]. Journal of Propulsion and Power, 2002, 18(4):889-895.
[88] VOLINO R J, IBRAHIM M B. Separation control on high lift low-pressure turbine airfoils using pulsed vortex generator jets[J]. Applied Thermal Engineering, 2012, 49(4):31-40.
[89] EVANS S, COULL J, HANEEF I, et al. Minimizing the loss produced by a turbulent separation using vortex generator jets[J]. AIAA Journal, 2012, 50(4):778-787.
[90] EVANS S, HODSON H. Separation-control mechanisms of steady and pulsed vortex-generator jets[J]. Journal of Propulsion and Power, 2012, 28(6):1201-1213.
[91] FENG Y Y, SONG Y P, CHEN F, et al. Effect of endwall vortex generator jets on flow separation control in a linear compressor cascade[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2015, 229(12):2221-2230.
[92] FENG Y Y, SONG Y P, CHEN F, et al. Active flow separation control using endwall vortex generator jets in highly loaded compressor cascades:GT2015-42268[R]. New York:ASME, 2015.
[93] 李龙婷, 宋彦萍, 刘华坪, 等. 射流式旋涡发生器对弯曲扩压叶栅流场的影响[J]. 航空动力学报, 2015, 30(11):2658-2665. LI L T, SONG Y P, LIU H P, et al. Effects of vortex generator jet on the flow of bowed compressor cascades[J]. Journal of Aerospace Power, 2015, 30(11):2658-2665.
[94] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2):381-405. WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):381-405(in Chinese).
[95] POST M L, Corke T C. Separation control on high angle of attack airfoil using plasma actuators[J]. AIAA Journal, 2004, 42(11):2177-2184.
[96] HUANG J, CORKE T C, THOMAS F O. Unsteady plasma actuators for separation control of low-pressure turbine blades[J]. AIAA Journal, 2006, 44(7):1477-1487.
[97] MARKS C R, SONDERGAARD R, WOLFF M, et al. Experimental comparison of DBD plasma actuators for low Reynolds number separation control[J]. Journal of Turbomachinery, 2013, 135(1):011024.
[98] WU Y, LI Y H, ZHU J Q, et al. Experimental investigation of a subsonic compressor with plasma actuation treated casing:AIAA-2007-3849[R]. Reston, VA:AIAA, 2007.
[99] LI Y H, WU Y, ZHOU M, et al. Control of the corner separation in a compressor cascade by steady and unsteady plasma aerodynamic actuation[J]. Experiments in Fluids, 2010, 48(6):1015-1023.
[100] WU Y, ZHAO X H, LI Y H, et al. Corner separation control in a highly loaded compressor cascade using plasma aerodynamic actuation:GT2012-69196[R]. New York:ASME, 2012.
[101] AKCAYOZ E, VO H D, MAHALLATI A. Controlling corner stall separation with plasma actuators in a compressor cascade[J]. Journal of Turbomachinery, 2016, 138(8):081008.
[102] PEACOCK R E. Boundary layer suction to elimanate corner separation:NACA-RM-3663[R]. Washington, D.C.:NACA, 1965.
[103] GBADEBO S A, CUMPSTY N A, HYNES T P. Control of three-dimensional separations in axial compressors by tailored boundary layer suction[J]. Journal of Turbomachinery, 2008, 130(1):125-128.
[104] GMELIN C, THIELE F, LIESNER K, et al. Investigations of secondary flow suction in a high speed compressor cascade:GT2011-46479[R]. New York:ASME, 2011.
[105] 陈萍萍, 乔渭阳, KARSTEN L, 等. 边界层吸气对压气机叶栅角区分离损失的控制[J]. 航空学报, 2014, 35(11):3000-3011. CHEN P P, QIAO W Y, KARSTEN L, et al. Boundary layer suction on hub-corner separation loss in a linear compressor cascade[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):3000-3011(in Chinese).
[106] ZHANG L X, CHEN S W, XU H, et al. Effect of boundary layer suction on aerodynamic performance of high-turning compressor cascade:GT2013-94907[R]. New York:ASME, 2013.
[107] MIKOLAJCZAK A A, WEINGOLD H D, NIKKANEN J P. Flow through cascades of slotted compressor blades[J]. Journal of Engineering for Gas Turbines & Power, 1970, 92(1):57-64.
[108] FOTTNER L. Theoretical and experimental investigations on aerodynamically highly-loaded compressor bladings with boundary layer control[C]//Proceedings of 4th International Symposium on Air Breathing Engines. Reston, VA:AIAA, 1980:259-268.
[109] STURM W, SCHEUGENPFLUG H, FOTTNER L. Performance improvements of compressor cascades by controlling the profile and sidewall boundary layers[J]. Journal of Turbomachinery, 1992, 114(3):477-486.
[110] NERGER D, SAATHOFF H, RADESPIEL R, et al. Experimental investigation of endwall and suction side blowing in a highly loaded compressor stator cascade[J]. Journal of Turbomachinery, 2010, 134(2):255-267.
[111] HECKLAU M, WIEDERHOLD O, ZANDER V, et al. Active separation control with pulsed jets in a critically loaded compressor cascade[J]. AIAA Journal, 2013, 49(49):1729-1739.
[112] GMELIN C, ZANDER V, HECKLAU M, et al. Active flow control concepts on a highly loaded subsonic compressor cascade:résumé of experimental and numerical results[J]. Journal of Turbomachinery, 2012, 134(6):061021.
[113] 刘艳明, 关朝斌, 孙拓, 等. 合成射流激励对压气机叶栅气动性能的影响[J]. 工程热物理学报, 2011, 32(5):750-754. LIU Y M, GUAN C B, SUN T, et al. The investigation of aerodynamic characteristics in compressor cascade with synthetic jet excitation[J]. Journal of Engineering Thermophysics, 2011, 32(5):750-754(in Chinese).
[114] TIAN S M, WU Y, ZHANG Z B, et al. Experimental study and vortex analysis in a linear compressor cascade with active flow control:GT2016-57276[R]. New York:ASME, 2016.
/
〈 | 〉 |