ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Sparse optimization for weight coefficient of wideband frequency invariant beamforming
Received date: 2016-09-18
Revised date: 2016-12-13
Online published: 2017-01-18
Supported by
National Natural Science Foundation of China (61401207);Key Projects Foundation of Shanghai Aerospace (SAST201437);College Graduate Scientific Research Innovation Fund in Jiangsu Province of China (KYZZ16_0187)
To reduce the computational complexity of the basic Fourier transform frequency invariant beamforming (FIB), the sparse optimization for tap weights of the FIB is proposed based on minimum l0 norm. The optimization is solved by the orthogonal matching pursuit (OMP)., With the proposed method, the sparse rate of the effective tap weights decreases to 3.53% when the relative error of the FIB beam pattern is less than 1%. At the same time, the beam patterns of FIB synthesized by sparse tap weights can hold high gain, equiripple and low sidelobes. To reduce the number of tapped delay lines (TDLs), the sparse optimization for the TDLs is also presented, which effectively decreases the number of sensor elements, and reduces the implementation complexity. The simulation results verify the correctness and effectiveness of the proposed method.
ZHANG Shurui , MA Xiaofeng , SHENG Weixing , HAN Yubing . Sparse optimization for weight coefficient of wideband frequency invariant beamforming[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(7) : 320794 -320794 . DOI: 10.7527/S1000-6893.2017.320794
[1] NORDHOLM S, DAM H H H, LAI C C, et al. Broadband beamforming and optimization[J]. Academic Press Library in Signal Processing, 2014, 3: 553-598.
[2] SENAPATI A, GHATAK K, ROY J S. A comparative study of adaptive beamforming techniques in smart antenna using LMS algorithm and its variants[C]//2015 International Conference on Computational Intelligence and Networks (CINE), 2015: 58-62.
[3] GENG Z, DENG H, HIMED B. Adaptive radar beamforming for interference mitigation in radar-wireless spectrum sharing[J]. IEEE Signal Processing Letters, 2015, 22(4): 484-488.
[4] AHMAD F, ZHANG Y, AMIN M G. Three-dimensional wideband beamforming for imaging through a single wall[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(2): 176-179.
[5] ZHAO Y, LIU W, LANGLEY R J. Adaptive wideband beamforming with frequency invariance constraints[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(4): 1175-1184.
[6] LIU W, WEISS S. Wideband beamforming: concepts and techniques[M]. New York: John Wiley & Sons, 2010: 143-198.
[7] BYRNE D, CRADDOCK I J. Time-domain wideband adaptive beamforming for radar breast imaging[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(4): 1725-1735.
[8] CROCCO M, TRUCCO A. Design of superdirective planar arrays with sparse aperiodic layouts for processing broadband signals via 3D beamforming[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2014, 22(4): 800-815.
[9] WEISS S, BENDOUKHA S, ALZIN A, et al. MVDR broadband beamforming using polynomial matrix techniques[C]//IEEE 23rd European Signal Processing Conference (EUSIPCO), 2015: 839-843.
[10] EBRAHIMI R, SEYDNEJAD S R. Elimination of pre-steering delays in space-time broadband beamforming using frequency domain constraints[J]. IEEE Communications Letters, 2013, 17(4): 769-772.
[11] EBRAHIMI R, SEYDNEJAD S R. Wideband Laguerre adaptive array with pre-steering constraints[J]. IET Signal Processing, 2015, 9(7): 529-536.
[12] SALLBERG B. Faster subband signal srocessing [dsp Tips&Tricks][J]. IEEE Signal Processing Magazine, 2013, 30(5): 144-150.
[13] SEKIGUCHI T, KARASAWA Y. Wideband beamspace adaptive array utilizing FIR fan filters for multibeam forming[J]. IEEE Transactions on Signal Processing, 2000, 48(1): 277-284.
[14] LIU W, WEISS S. Design of frequency invariant beamformers for broadband arrays[J]. IEEE Transactions on Signal Processing, 2008, 56(2): 855-860.
[15] ZHAO Y, LIU W, LANGLEY R J. Design of frequency invariant beamformers in subbands[C]//IEEE/SP 15th Workshop on Statistical Signal Processing, 2009: 201-204.
[16] ZHAO Y, LIU W, LANGLEY R J. Application of the least squares approach to fixed beamformer design with frequency-invariant constraints[J]. IET Signal Processing, 2011, 5(3): 281-291.
[17] 张书瑞, 马晓峰, 盛卫星, 等. 零陷可控的低旁瓣频率不变宽带波束形成[J]. 系统工程与电子技术, 2016, 38(6): 114-120. ZHANG S R, MA X F, SHENG W X, et al. Wideband frequency beamforming with low sidelobes and anti-jamming nulls[J]. Systems Engineering and Electronics, 2016, 38(6): 114-120 (in Chinese).
[18] HAWES M B, LIU W. Sparse array design for wideband beamforming with reduced complexity in tapped delay-lines[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2014, 22(8): 1236-1247.
[19] 王永良, 丁前军, 李荣锋. 自适应阵列处理[M]. 北京: 清华大学出版社, 2009: 13-61. WANG Y L, DING Q J, LI R F. Adaptive array processing[M]. Beijing: Tsinghua University Press, 2009: 13-61 (in Chinese).
[20] 王建, 盛卫星, 韩玉兵, 等. 基于压缩感知的自适应数字波束算法[J]. 电子与信息学报, 2013, 35(2): 438-444. WANG J, SHENG W X, HAN Y B, et al. Adaptive digital beam forming algorithm based on compressed sensing[J]. Jounal of Electronics & Information Technology, 2013, 35(2): 438-444 (in Chinese).
[21] WANG J, SHENG W X, HAN Y B, et al. Adaptive beamforming with compressed sensing for sparse receiving array[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 823-833.
[22] TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.
/
〈 | 〉 |