IDMS based method for quantitative monitoring of aero-engine ingested airborne sands

  • SUN Jianzhong ,
  • LIU Xinchao ,
  • LIU Ruochen ,
  • KANG Yuanrong ,
  • YIN Yibing ,
  • ZUO Hongfu
Expand
  • College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2016-11-24

  Revised date: 2016-12-07

  Online published: 2016-12-28

Supported by

National Natural Science Foundation of China (61403198);Natural Science Foundation of Jiangsu Province (BK20140827);Aeronautical Science Foundation of China (2014ZB52020)

Abstract

In order to monitor the ingested airborne sands inside the aero-engine quantitatively, this paper builds the simulation model based on ingested debris monitoring system (IDMS) to analyze different ingested airborne sand distributions and also proposes the method for estimating the total amount of ingested airborne sands, based on the IDMS signal. IDMS model is developed in finite element software ANSYS to simulate the electrostatic field of ingested airborne sands with electrostatic charges. The relationship between the IDMS monitoring signals and the parameters of the ingested airborne sands is studied, such as mass concentrations and charge-to-mass ratio. The IDMS sensing characteristic derived from the finite element model proposed is found to be consistent with the results of previous experiments. The trend of electrostatic signals from both simulation and experiment are the same, laying the basis for the monitoring of the mass concentrations of the ingested airborne sands as well as the estimation of total amount. This simulation study shows that the relationship between induced charges of IDMS and mass concentration is linear, given a constant charge-to-mass ratio. The induced charges along with different ingested airborne sand distributions can be extracted from real-time monitoring system. Therefore, based on the measured charge signals using the IDMS, the mass concentrations of the ingested airborne sands can be recorded on-line, and further the total amount of airborne sands ingested during a specified interval can be estimated with an estimation error no greater than 4%.

Cite this article

SUN Jianzhong , LIU Xinchao , LIU Ruochen , KANG Yuanrong , YIN Yibing , ZUO Hongfu . IDMS based method for quantitative monitoring of aero-engine ingested airborne sands[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(8) : 320977 -320977 . DOI: 10.7527/S1000-6893.2016.320977

References

[1] 章伟, 郭徽. 浅谈灰尘对直升机动力装置性能和可靠性的影响[C]//湖南国防科技论坛. 湖南:湖南省兵工协会, 2009:451-454. ZHANG W, GUO H. Influence of dust on the performance and reliability of helicopter power plant[C]//Hunan National Defence Science and Technology Forum. Hunan:Hunan Ordnance Association, 2009:451-454(in Chinese).
[2] 国防科学技术工业委员会. 航空涡喷涡扇发动机吞砂试验:GJB 2046-94[S]. 北京:中国航空综合技术研究所, 1994. Committee of Defense Industry of Science and Technology. Swallowing sands tests of turbojet and turbofan engines:GJB 2046-94[S]. Beijing:AVIC China Aero-Polytechnology Establishment, 1994(in Chinese).
[3] 中国人民解放军总装备部. 军用装备实验室环境试验方法第12部分:砂尘试验:GJB 150.12A-2009[S]. 北京:总装备部军标出版发行部, 2009. General Armament Department of PLA. 12th part of environmental test methods for military equipment:Sand dust test:GJB 150.12A-2009[S]. Beijing:General Armament Department Military Label Publishing Department, 2009(in Chinese).
[4] GHENAIET A, ELDER R L, TAN S C. Particles trajectories through an axial fan and performance degradation due to sand ingestion:2001-GT-0497[R]. New York:ASME, 2001.
[5] DUNN M G, PADOVA C, MOLLER J E, et al. Performance deterioration of a turbofan and a turbojet engine upon exposure to a dust environment[J]. Journal of Engineering for Gas Turbines & Power, 1987, 109(3):336-343.
[6] HAMED A A. Turbine blade surface deterioration by erosion[J]. Journal of Turbomachinery, 2004, 127(3):445-452.
[7] WALSH W S, THOLE K A, JOE C. Effects of sand ingestion on the blockage of film-cooling holes[C]//Turbomachinery Technical Conference and Exposition 2006. New York:ASME, 2006:81-90.
[8] CARDWELL N D, THOLE K A, BURD S W. Investigation of sand blocking within impingement and film-cooling holes:2008-GT-51351[R]. New York:ASME, 2001.
[9] OGIRIKI E, THANK-GOD I, GOWON S. Effect of fouling, thermal barrier coating degradation and film cooling holes blockage on gas turbine engine creep life[J]. Procedia Cirp, 2015, 38:228-233.
[10] SCALA S, KONRAD M, MASON R, et al. Sensor requirements to monitor the real time performance of a gas turbine engine undergoing compressor blade erosion:AIAA-2004-3548[R]. Reston, VA:AIAA, 2004.
[11] POWRIE H E G, FISHER C E. Monitoring of foreign objects ingested into the intake of a jet engine[C]//International Conference on Condition Monitoring. Swansea:University of Wales, 1999:175-190.
[12] POWRIE H E G, FISHER C E. Engine health monitoring:Towards total prognostics[C]//Aerospace Conference. Piscataway, NJ:IEEE Press, 1999:11-20.
[13] 文振华, 左洪福, 李耀华. 气路颗粒静电监测技术及实验[J]. 航空动力学报, 2008, 23(12):2321-2326. WEN Z H, ZUO H F, LI Y H. Gas path debris electrostatic monitoring technology and experiment[J]. Journal of Aerospace Power, 2008, 23(12):2321-2326(in Chinese).
[14] 殷逸冰, 左洪福, 冒慧杰, 等. 航空发动机进气道静电传感器空间模型解析及感应信号影响因素实验分析[J]. 仪器仪表学报, 2015, 36(4):795-803. YIN Y B, ZUO H F, MAO H J, et al. Spatial analysis of inlet electrostatic sensor and experimental study on influence factors of charge-induced signal[J]. Journal of Instrument and Meter, 2015, 36(4):795-803(in Chinese).
[15] 殷逸冰, 左洪福, 文振华, 等. 航空发动机吸入颗粒物静电感应特性的模拟实验及分析[J]. 航空学报, 2015, 36(2):691-702. YIN Y B, ZUO H F, WEN Z H, et al.Electrostatic induction characteristics of aeroengine inhaled particles:Simulated experiment analysis[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):691-702(in Chinese).
[16] 冒慧杰, 左洪福, 黄文杰, 等. 航空新型静电传感器建模与标定实验[J]. 航空学报, 2016, 37(7):2242-2250. MAO H J, ZUO H F, HUANG W J, et al. Mathematical modeling and calibration experiment of new electrostatic sensor in aviation[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2242-2250(in Chinese).
[17] LIU R C, ZUO H F, SUN J Z, et al. Simulation of electrostatic oil line sensing and validation using experimental results[J]. Tribology International, 2017, 105:15-26.
[18] 李耀华, 左洪福, 文振华. 航空发动机气路颗粒静电监测技术模拟实验[J]. 航空学报, 2009, 30(4):604-608. LI Y H, ZUO H F, WEN Z H. Simulated experiment of aircraft engine gas path debris monitoring technology[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(4):604-608(in Chinese).
[19] 中国国家标准化管理委员会. 环境条件分类·自然环境条件·尘、沙、盐雾:GB/T 4797.2013-95[S]. 北京:中国标准出版社, 2013. China National Standardization Administration Committee. Classification of environmental conditions-natural conditions-dust, sand, salt fog:GB/T 4797.2013-95[S]. Beijing:China Standard Press, 2013(in Chinese).
[20] 郑晓静, 黄宁, 周又和. 风沙运动的沙粒带电机理及其影响的研究进展[J]. 力学进展, 2004, 34(1):77-86. ZHENG X J, HUANG N, ZHOU Y H. Advances in investigation on electrification of wind-blown sands and its effects[J]. Advances in Mechanics, 2004, 34(1):77-86(in Chinese).
[21] GREELEY R, LEACH R. A preliminary assessment of the effects of electrostatics on aeolian processes:NASA TM-79729-236[R].Washington, D.C:NASA, 1978.
[22] ZHENG X J, HUANG N, ZHOU Y. Laboratory measurement of electrification of wind-blown sands and simulation of its effect on sand saltation movement[J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D10):1-9.
[23] 黄宁, 郑晓静. 风沙流中沙粒带电现象的实验测试[J]. 科学通报, 2000, 45(20):2232-2235. HUANG N, ZHENG X J. Experimental study on charged phenomena of sand grains in wind blown sand[J]. Chinese Science Bulletin, 2000, 45(20):2232-2235(in Chinese).
[24] SCHMIDT D S, SCHMIDT R A, DENT J D. Electrostatic force on salting sand[J]. Journal of Geophysical Research:Atmospheres, 1998, 103(D8):8997-9001.
[25] JONES A D, JOHNSTON A M, VINCENT J H. The measurement of electric charge on airborne dusts in quarries and mines[J]. Staub Reinhaltung Der Luft, 1985, 45(10):475-480.

Outlines

/