ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Research progress on ice shape measurement approaches for aircraft icing
Received date: 2016-08-23
Revised date: 2016-10-26
Online published: 2016-11-08
Supported by
National Natural Science Foundation of China (11172314, 11602292); National Basic Research Program of China (2015CB755800)
Study on ice shapes under different icing conditions is an indispensable part in research on aircraft icing, and is important for aerodynamic analysis, anti-icing system design, flight operation and airworthiness certification after aircraft icing. This paper focuses on the measurement approaches for ice shape. With sufficient survey of corresponding works home and abroad, the technological process and principle of each contact and non-contact approach are introduced, and their advantages and disadvantages are also summarized systematically. Based on this summary and characteristics of in-flight icing and icing wind test, the challenges in the future are pointed out, which mainly include all type ice measuring, whole area measuring, and on-line measuring. Possible work on ice shape measurement in the future by combining basic approaches and numerical methods is also discussed.
YI Xian , WANG Bin , LI Weibin , GUO Long . Research progress on ice shape measurement approaches for aircraft icing[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(2) : 520700 -520711 . DOI: 10.7527/S1000-6893.2016.0276
[1] CEBECI T, KAFYEKE F. Aircraft icing[J]. Annual Review of Fluid Mechanics, 2003, 35(1):11-21.
[2] LYNCH F T, KHODADOUST A. Effects of ice accretions on aircraft aerodynamics[J]. Progress in Aerospace Sciences, 2001, 37(8):669-767.
[3] BRAGG M B, BROEREN A P, BLUMENTHAL L A. Iced-airfoil aerodynamics[J]. Progress in Aerospace Sciences, 2005, 41(5):323-362.
[4] 易贤. 飞机积冰的数值计算与积冰试验相似准则研究[D]. 绵阳:中国空气动力研究与发展中心, 2007. YI X. Numerical computation of aircraft icing and study on icing test scaling law[D]. Mianyang:China Aerodynamics Research and Development Center, 2007(in Chinese).
[5] KIND R J, POTAPCZUK M G, FEO A, et al. Experimental and computational simulation of in-flight icing phenomena[J]. Progress in Aerospace Sciences, 1998, 34(5):257-345.
[6] 易贤, 桂业伟, 朱国林. 飞机三维结冰模型及其数值求解方法[J]. 航空学报, 2010, 31(11):2152-2158. YI X, GUI Y W, ZHU G L. Numerical method of a three-dimensional ice accretion model of aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11):2152-2158(in Chinese).
[7] AGARD. Ice accretion simulation:AGARD-AR-344[R]. Paris:North Atlantic Treaty Organization, 1997.
[8] CHARPIN F, FASSO G. Icing testing in the large Modane wing-tunnel on full-scale and reduced scale models:NASA-TM-75737[R]. Washington, D.C.:NASA, 1979.
[9] 裘燮纲, 韩凤华. 飞机防冰系统[M]. 北京:航空专业教材编审组, 1985. QIU X G, HAN F H. Aircraft anti-icing system[M]. Beijing:Aeronautic Specialty Textbook Read and Edit Group, 1985(in Chinese).
[10] WRIGHT W B. Simulation of two-dimensional icing, de-icing and anti-icing phenomena[D]. Toledo:University of Toledo, 1991.
[11] HUANG J R. Numerical simulation of an electro thermally de-iced aircraft surface using the finite element method[D]. Toledo:University of Toledo, 1993.
[12] CROCE G, HABASHI W G, GUEVREMONT G, et al. 3D thermal analysis of an anti-icing device using FENSAP-ICE:AIAA-1998-0193[J]. Reston:AIAA, 1998.
[13] BRUMBY R E. The effect of wing ice contamination on essential flight characteristics[C]//AGARD Conference Proceedings. Paris:AGARD, 1991.
[14] BRAGG M B, HUTCHISON T, MERRET J, et al. Effect of ice accretion on aircraft flight dynamics:AIAA-2000-0360[R]. Reston:AIAA, 2000.
[15] POKHARIYAL D, BRAGG M B, HUTCHISON T, et al. Aircraft flight dynamics with simulated ice accretion:AIAA-2001-0541[R]. Reston:AIAA, 2001.
[16] 黄成涛, 王立新. 风雨对飞机飞行安全性的影响[J]. 航空学报, 2010, 31(4):694-670. HUANG C T, WANG L X. Effects of rain and wind on aircraft flight safety[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(4):694-670(in Chinese).
[17] 葛志浩, 徐浩军, 刘琳. 机翼结冰后人-机系统动态特性仿真与风险评估[J]. 系统仿真学报, 2008, 20(8):1980-1982. GE Z H, XU H J, LIU L. Simulation study of aircraft-pilot system in wing icing conditions and risk evaluation[J]. Journal of System Simulation, 2008, 20(8):1980-1982(in Chinese).
[18] HEINRICH A, ROSS R, ZUMWALT G, et al. Aircraft icing handbook:ADA238040, DOT/FAA/CT-88/8-2[R]. New York:Federal Aviation Administration, 1991.
[19] CIVIL U K. Inflight icing:A review of some JAA sctivities[C]//FAA International Conference on Aircraft Inflight Icing. 1996.
[20] KIND R J. Ice accretion simulation evaluation test:TR-038[R]. Paris:North Atlantic Treaty Organization, 2001.
[21] LEE S, BROEREN A P, ADDY JR H E, et al. Development of 3D ice accretion measurement method:AIAA-2012-2938[R]. Reston:AIAA, 2012.
[22] TAN S C, PAPADAKIS M, MILLER D, et al. Experimental study of large droplet splashing and breakup:AIAA-2007-0904[R]. Reston:AIAA, 2007.
[23] 徐忠达, 苏媛, 曹义华. 平尾积冰对飞机纵向气动参数的影响[J]. 航空学报, 2013, 34(7):1563-1571. XU Z D, SU Y, CAO Y H. Effects of tail plane icing on aircraft longitudinal aerodynamic parameters[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7):1563-1571(in Chinese).
[24] 桑为民, 李凤蔚, 施永毅. 翼面结冰对翼身组合体气动特性影响研究[J]. 西北工业大学学报, 2008, 26(4):409-412. SANG W M, LI F W, SHI Y Y. Exploring icing effect on aerodynamic performance for wing-body configuration[J]. Journal of Northwestern Polytechnical University, 2008, 26(4):409-412(in Chinese).
[25] 周莉, 徐浩军, 杨哲, 等. 冰脊对翼型气动特性影响的数值模拟研究[J]. 飞行力学, 2012, 30(6):489-493. ZHOU L, XU H J, YANG Z, et al. Numerical simulation of ridge ice shapes on airfoil aerodynamics[J]. Flight Dynamics, 2012, 30(6):489-493(in Chinese).
[26] 易贤, 桂业伟, 朱国林, 等. 运输机翼型结冰的计算和实验[J]. 航空动力学报, 2011, 26(4):808-813. YI X, GUI Y W, ZHU G L, et al. Experimental and computational investigation into ice accretion on airfoil of a transport aircraft[J]. Journal of Aerospace Power, 2011, 26(4):808-813(in Chinese).
[27] MILLER D, POTAPCZUK M, LANGHALS T. Preliminary investigation of ice shape sensitivity to parameter variations[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2005.
[28] ANDERSON D N, TSAO J C. Ice shape scaling for aircraft in SLD conditions:NASA/CR-215302[R]. Washington, D.C.:NASA, 2008.
[29] BRAGG M B, BROEREN A P. Airfoil ice-accretion aerodynamics simulation:NASA/TM-214830[R]. Washington, D.C.:NASA, 2008.
[30] BROEREN A P, ADDY JR H E. Aerodynamic simulation of ice accretion on airfoils:NASA/TP-216929[R]. Washington, D.C.:NASA, 2011.
[31] BROEREN A, DIEBOLD J, BRAGG M. Aerodynamic classification of swept-wing ice accretion:NASA/TM-216381[R]. Washington, D.C.:NASA, 2013.
[32] BROEREN A P, POTAPCZUK M G. Swept-wing ice accretion characterization and aerodynamics:AIAA-2013-2824[R]. Reston:AIAA, 2013.
[33] WONG S C, PAPADAKIS M, YEONG H W, et al. Comparison of experimental and computational ice shapes for a swept wing model:SAE Technical Paper[R]. New York:SAE, 2011.
[34] HAN Y, PALACIOS J L, SMITH E C. An experimental correlation between rotor test and wind tunnel ice shapes on NACA 0012 airfoils[C]//SAE 2011 International Conference on Aircraft and Engine Icing and Ground Deicing, Society of Automotive Engineers. New York:SAE, 2011.
[35] 李伟斌, 易贤, 杜雁霞, 等. 基于变分分割模型的结冰冰形测量方法[J]. 航空学报, 2017, 38(1):120167. LI W B, YI X, DU Y X, et al. A measurement approach for ice shape based on variational segmentation model[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1):120167(in Chinese).
[36] ROBERT C M, RICHARD L P, ROBERT L H. In-flight photogrammetric measurement of wing ice accretions:NASA TM-87191[R]. Washington, D.C.:NASA, 1986.
[37] KEVIN M, NIKOLA J, RICHARD R, et al. In-flight measurements of wing ice shapes and wing section drag increases caused by natural icing conditions:NASA TM-87301[R]. Washington, D.C.:NASA, 1986.
[38] 孟繁鑫, 陈维建, 梁青森, 等. 引射式结冰风洞内圆柱结冰试验[J]. 航空动力学报, 2013, 28(7):1467-1474. MENG F X, CHEN W J, LIANG Q S, et al. Experiment on cylinder icing in injection driven icing wind tunnel[J]. Journal of Aerospace Power, 2013, 28(7):1467-1474(in Chinese).
[39] BLASCO P M. An experimental and computational approach to iced wind turbine aerodynamics[D]. Pennsylvania:The Pennsylvania State University, 2015.
[40] LEE J D, HARDING R, PALKO R L. Documentation of ice shapes on the main rotor of a UH-1H helicopter in hover:NASA-CR-168332[R]. Washington, D.C.:NASA, 1984.
[41] REEHORST A L, RICHTER G P. New methods and materials for molding and casting ice formations:NASA-TM-100126[R]. Washington, D.C.:NASA, 1987.
[42] HAN Y Q, PALACIOS J. Analytical and experimental determination of airfoil performance degradation due to ice accretion[C]//4th AIAA Atmospheric and Space Environments Conference. Reston:AIAA, 2012:1-25.
[43] BROEREN A P, WHALEN E A, BUSCH G T, et al. Aerodynamic simulation of runback ice accretion[J]. Journal of Aircraft, 2010, 47(3):924-939.
[44] PAPADAKIS M, YEONG H W, WONG S C, et al. Experimental investigation of ice accretion effects on a swept wing:DOT/FAA/AR-05/39[R]. 2005.
[45] 黄锦, 张晓兵, 尹涵春, 等. 基于图像处理的三维测量方法[J]. 电子器件, 2002, 25(4):364-368. HUANG J, ZHANG X B, YIN H C, et al. 3D measuring techniques based on image processing[J]. Journal of Electron Devices, 2002, 25(4):364-368(in Chinese).
[46] 徐温. 主动三维光学测量技术研究[D]. 武汉:华中师范大学, 2012. XU W. Study on active 3D optical measurement[D]. Wuhan:Central China Normal University, 2012(in Chinese).
[47] CARSTEN R, REINHOLD R, JAN T. 3-D shape measurement of complex objects by combining photogrammetry and fringe projection[J]. Optical Engineering, 2000, 39(1):224-231.
[48] 蔡元元, 苏显渝. 采用多投影器的反向条纹投影技术[J]. 光学学报, 2006, 26(11):1641-1646. CAI Y Y, SU X Y. Inverse fringe projection technique using multi-projectors simultaneously[J]. Acta Optica Sinica, 2006, 26(11):1641-1646(in Chinese).
[49] COLLIER P, DIXON L, FONTANA D. The use of close range photogrammetry for studying ice accretion on aerofoil sections[J]. Photogrammetric Record, 1999, 16(94):671-684.
[50] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. The International Journal of Computer Vision, 2004, 60(2):91-110.
[51] LEUTENEGGER S, CHLI M, SIEGWART R Y. BRISK:binary robust invariant scalable keypoints[C]//IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE Press, 2011:2548-2555.
[52] ALAHI A, ORTIZ R, VANDERGHEYNST P. FREAK:fast retina keypoint[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 2012:510-517.
[53] 吴强, 侯树艳, 李旭雯. 融合图像灰度信息与边缘特征的快速匹配算法[J]. 信号处理, 2013, 29(2):268-273. WU Q, HOU S Y, LI X W. Fast image matching algorithm based on gray and edge features[J]. Journal of Signal Processing, 2013, 29(2):268-273(in Chinese).
[54] STRUK P M, LYNCH C J. Ice growth measurements from image data to support ice-crystal and mixed-phase accretion testing[C]//4th AIAA Atmospheric and Space Environments Conference. Reston:AIAA, 2012.
[55] WALDMAN R M, HU H. High-speed imaging to quantify transient ice accretion process over an airfoil[J]. Journal of Aircraft, 2015, 53(2):369-377.
[56] 孙长库. 激光测量技术[M]. 天津:天津大学出版社, 2001. SUN C K. Laser measurement technology[M]. Tianjin:Tianjin University Press, 2001(in Chinese).
[57] 王斌, 刘桂华, 张利萍, 等. 基于线结构光的冰轮廓测量[J]. 实验流体力学, 2016, 30(3):14-20. WANG B, LIU G H, ZHANG L P, et al. Ice profile measurement based on line structured light[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3):14-20(in Chinese).
[58] MERCER C R, VARGAS M, OLDENBURG J R. A preliminary study on ice shape tracing with a laser light sheet:NASA Sti/recon Technical Report N[R]. Washington, D.C.:NASA, 1993.
[59] HOVENAC E A, VARGAS M. A laser-based ice shape pro-filometer for use in icing wind tunnels:NASA Sti/recon Technical Report N[R]. Washington, D.C.:NASA, 1995.
[60] ABDEL-AZIZ Y I, KARARA H M. Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry[J]. Photogrammetric Engineering & Remote Sensing, 2015, 81(2):103-107.
[61] TSAI R Y. An efficient and accurate camera calibration technique for 3D machine vision[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 1986:364-374.
[62] ZHANG Z Y. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11):1330-1334.
[63] 王文成, 徐建强, 司书春. 一种改进的重心法在光带中心提取中的应用[J]. 光电子激光, 2005, 16(10):1239-1241. WANG W C, XU J Q, SI S C. An improved barycenter method used in light-trap center acquiring[J]. Journal of Optoelectronics Laser, 2005, 16(10):1239-1241(in Chinese).
[64] 熊会元, 宗志坚, 陈承鹤. 线结构光条纹中心的全分辨率精确提取[J]. 光学精密工程, 2009, 5(17):1057-1062. XIONG H Y, ZONG Z J, CHEN C H. Accurately extracting full resolution centers of structured light stripe[J]. Optics and Precision Engineering, 2009, 5(17):1057-1062(in Chinese).
[65] 李中伟, 王从军, 史玉升. 一种结合梯度锐化和重心法的光条中心提取算法[J]. 中国图像图形学报, 2008, 13(1):64-68. LI Z W, WANG C J, SHI Y S. An algorithm for detecting center of structured light stripe combining gradient sharpening with barycenter method[J]. Journal of Image and Graphics, 2008, 13(1):64-68(in Chinese).
[66] LV Z H, ZHANG Z Y. Build 3D scanner system based on binocular stereo vision[J]. Journal of Computers, 2012, 7(2):399-404.
[67] 胡坤, 周富强, 张广军. 一种快速结构光条纹中心亚像素精度提取方法[J]. 仪器仪表学报, 2006, 27(10):1326-1329. HU K, ZHOU F Q, ZHANG G J. Fast extrication method for sub-pixel center of structured light stripe[J]. Chinese Journal of Scientific Instrument, 2006, 27(10):1326-1329(in Chinese).
[68] 贺俊吉, 张广军. 结构光三维视觉检测中光条图像处理方法研究[J]. 北京航空航天大学报, 2003, 29(7):593-597. HE J J, ZHANG G J. Study on method for processing image of strip in structured-light 3D vision measuring technique[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(7):593-597(in Chinese).
[69] JANG J H, HONG K S. Detection of curvilinear structures and reconstruction of their regions in gray-scale images[J]. Pattern Recognition, 2002, 35(4):807-824.
[70] STEGER C. Extracting curvilinear structures:A differential geometric approach[J]. Computer Vision-ECCV'96 Lecture Notes in Computer Science, 1996, 1064:630-641.
[71] STEGER C. An unbiased detector of curvilinear structures[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1998, 20(2):113-125.
[72] ZHANG L, GUO L, JIANJUN Y. Investigation of ice shape measurement technique based on laser sheet and machine vision in icing wind tunnel[C]//Proceedings of the 2009 Fifth International Conference on Image and Graphics. Piscataway, NJ:IEEE Computer Society, 2009:790-795.
[73] LEE S, BROEREN A P, KREEGER R E, et al. Implementation and validation of 3-D ice accretion measurement methodology[C]//6th AIAA Atmospheric and Space Environments Conference. Reston:AIAA, 2014.
[74] RICHARD E, KREEGER J T. Ice shapes on a tail rotor[C]//6th AIAA Atmospheric and Space Environments Conference. Reston:AIAA, 2014:16-20.
[75] GONG X, BANSMER S. 3-D ice shape measurements using mid-infrared laser scanning[J]. Optics Express, 2015, 23(4):4908-4926.
[76] GONG X, BANSMER S. Laser scanning applied for ice shape measurements[J]. Cold Regions Science and Technology, 2015, 115:64-76.
[77] HANSMAN R J, KIRBY M S, MCKNIGHT R C, et al. In-flight measurement of airfoil icing using an array of ultrasonic transducers[J]. Journal of Aircraft, 1988, 25(6):531-537.
[78] 尹胜生, 叶林, 陈斌. 可识别冰型的光纤结冰传感器[J]. 仪表技术与传感器, 2012(5):9-12. YIN S S, YE L, CHEN B. Fiber-optical icing sensor for detecting the icing type[J]. Instrument Technique and Sensor, 2012(5):9-12(in Chinese).
[79] KOROLEV A V, STRAPP J W, ISAAC G A. The Nevzorov airborne hot-wire LWC-TWC probe:Principle of operation and performance characteristics[J]. Journal of Atmospheric and Oceanic Technology, 1998, 15(6):1495-1510.
[80] KOROLEV A V, STRAPP J W, ISAAC G A. Improved airborne hot-wire measurements of ice water content in clouds[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(9):2121-2131.
[81] 李广义, 李军, 刘松涛, 等. PET/CT成像原理概述[J]. 医学影像学杂志, 2004, 14(8):681-684. LI G Y, LI J, LIU S T, et al. ET/CT imaging theory[J]. Journal of Medical Imaging, 2004, 14(8):681-684(in Chinese).
/
〈 | 〉 |