ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Test particle Monte Carlo method for rapid prediction of aerodynamic properties of spacecraft in lower LEO
Received date: 2016-07-19
Revised date: 2016-09-22
Online published: 2016-10-08
Fast and accurate prediction of aerodynamic properties of satellites in lower low Earth orbit (LEO) is a fundamental prerequisite for determination and control of the orbit. Based on the test particle Monte Carlo (TPMC) method for the calculation of molecular flux rate through a pipe in vacuum technology, the TPMC method for fast and accurate prediction of aerodynamic properties of spacecraft in lower LEO is developed, combined with the free-molecular theory. The main simulation processes and important procedures are presented. The method is validated by comparing the aerodynamic properties of a satellite with two solar panels with the results from the direct simulation Monte Carlo (DSMC) technique and the panel integral method based on free-molecular flow theory. It is indicated that the TPMC method is applicable to complex configurations in engineering. Results also shows that the TPMC method is capable of dealing with multiple reflections that the panel integral method cannot consider, resulting in an accurate aerodynamic coefficient. In addition, the CPU time and physical memory used by the TPMC method is less than that by the DSMC technique by an order of 3 to 4 and 1 to 2, respectively, without compromising the solution accuracy. The TPMC is found to be an ideal method for fast and accurate prediction of aerodynamic properties of satellites in lower LEO.
JIN Xuhong , HUANG Fei , CHENG Xiaoli , WANG Qiang . Test particle Monte Carlo method for rapid prediction of aerodynamic properties of spacecraft in lower LEO[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(5) : 120625 -120625 . DOI: 10.7527/S1000-6893.2016.0260
[1] 李志辉, 吴俊林, 彭傲平, 等. 天宫飞行器低轨控空气动力特性一体化建模与计算研究[J]. 载人航天, 2015, 21(2):106-114. LI Z H, WU J L, PENG A P, et al. Unified modeling and calculation of aerodynamics characteristics during low-orbit flying control of the TG vehicle[J]. Manned Spaceflight, 2015, 21(2):106-114 (in Chinese).
[2] TAPLEY B D, BETTADPUR S, RIES J C, et al. GRACE measurements of mass variability in the Earth system[J]. Science, 2004, 305(5683):503-505.
[3] REIGBER C, LUEHR H, SCHWINTZER P. CHAMP mission status[J]. Advances in Space Research, 2002, 30(2):129-134.
[4] RUMMEL R, YI W, STUMMER C. GOCE gravitational gradiometry[J]. Journal of Geodesy, 2011, 85(11):777-790.
[5] SECHI G, BUONOCORE M, COMETTO F, et al. In-flight results from the drag-free and attitude control of GOCE satellite[C]//18th IFAC World Congress, 2011:733-741.
[6] KOPPENWALLNER G. Satellite aerodynamics and determination of thermospheric density and wind[C]//27th International Symposium on Rarefied Gas Dynamics, 2010:1307-1312.
[7] CANUTO E. Drag-free and altitude control for the GOCE satellite[J]. Automatica, 2008, 44:1766-1780.
[8] MEHTA M M, MCLAUGHLIN C A, SUTTON E K. Drag coefficient modeling for grace using direct simulation Monte Carlo[J]. Advances in Space Research, 2013, 52:2035-2051.
[9] VALLADO D A. A critical assessment of satellite drag and atmospheric drag modeling:AIAA-2008-6442[R]. Reston:AIAA, 2008.
[10] COOK G E. Satellite drag coefficients[J]. Planetary and Space Science, 1965, 13:929-946.
[11] COOK G E. Drag coefficients of spherical satellites[J]. Annales Geophysicae, 1966, 22:53-64.
[12] MOE K. Density and composition of the lower thermosphere[J]. Journal of Geophysics Research, 1973, 78:1633-1644.
[13] JACCHIA L G. Static diffusion models of the upper atmosphere:Special Report No. 170[R]. Cambridge, MA:Smithsonian Astrophysics Obs., 1964.
[14] TSIEN H S. Superaerodynamics, mechanics of rarefied gases[J]. Journal of Aeronautical Science, 1946, 13:653-664.
[15] SCHAAF S A, CHAMBRE P L. Flow of rarefied gases[M]. Princeton:Princeton University Press, 1961:687-708.
[16] SENTMAN L H. Free molecule flow theory and its application to the determination of aerodynamic forces:TR LMSC-448514[R]. Sunnyvale, CA:Lockheed Missile and Space Corporation, 1961:265-409.
[17] SENTMAN L H. Comparison of the exact and approximate methods for predicting free-molecular aerodynamic coefficients[J]. American Rocket Society Journal, 1961, 31:1576-1579.
[18] FULLER J D, TOLSON R H. Program for the estimation of spacecraft aerodynamic properties:AIAA-2009-0728[R]. Reston:AIAA, 2009.
[19] BIRD G A. Approach to translational equilibrium in a rigid sphere gas[J]. Physics of Fluids, 1963, 6:1518-1519.
[20] BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[M]. New York:Oxford University Press, 1994:208-217.
[21] LEE J W, YI M Y. Modified view factor method for estimating molecular backscattering probability in space conditions[J]. Journal of Thermophysics and Heat Transfer, 2006, 20(2):336-341.
[22] DAVIS D H. Monte Carlo calculation of molecular flow rates through a cylindrical elbow and pipes of other shapes[J]. Journal of Applied Physics, 1960, 31(11):69-76.
[23] BIRD G A. Monte Carlo simulation of gas flows[J]. Annual Review of Fluid Mechanics, 1978, 10(8):11-31.
[24] FAN C, GEE C, FONG M C. Monte Carlo simulation of molecular flux on simple spacecraft surfaces due to self-and ambient-scatter of outgassing molecules:AIAA-1993-2867[R]. Reston:AIAA, 1993.
[25] FAN C, GEE C, FONG M C. Monte Carlo simulation for backscatter of outgassing molecules from simple spacecraft surfaces[J]. Journal of Spacecraft and Rocket, 1994, 31(4):649-655.
[26] GUO K L, LIAW G S. Outgassing-ambient interaction of a spherical body:AIAA-1994-2063[R]. Reston:AIAA, 1994.
[27] SKOVORODKO P A. Free molecular flow in the Holweck pump[C]//22th International Symposium on Rarefied Gas Dynamics, 2000:900-903.
[28] MOROZOV A A, GERETOVSZKY Z, SZORENYI T. Test particle Monte Carlo study of backward deposition during evaporation into a background gas[J]. Journal of Physics D:Applied Physics, 2008, 41:1-6.
[29] MALYSHEV O B, MIDDLEMAN K J. Test Particle Monte-Carlo modelling of installations for NEG film pumping properties evaluation[J]. Vacuum, 2009, 83:976-979.
[30] PLOTNIKOV M Y, SHKARUPA E V. Statistical error and optimal parameters of the test particle Monte Carlo method[C]//28th International Symposium on Rarefied Gas Dynamics, 2012:880-886.
[31] 靳旭红, 黄飞, 程晓丽, 等. 圆盘表面出气环境散射返回流TPMC模拟[J]. 空气动力学学报, 2015, 33(5):793-798. JIN X H, HUANG F, CHENG X L, et al. Test particle Monte Carlo simulation for return flux due to ambient scatter of outgassing molecules on a circular disk[J]. Acta Aerodynamica Sinica, 2015, 33(6):793-798 (in Chinese).
[32] 靳旭红, 黄飞, 程晓丽, 等. 航天器表面环境散射返回流TPMC模拟[J]. 计算物理, 2015, 32(5):529-536. JIN X H, HUANG F, CHENG X L, et al. Test particle Monte Carlo simulation of return flux on spacecraft surfaces due to ambient scatter of outgassing molecules[J]. Chinese Journal of Computational Physics, 2015, 32(5):529-536 (in Chinese).
[33] BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[M]. New York:Oxford University Press, 1994:423-328.
[34] HORTON B E, BOWHILL S A. Computer simulation of supersonic rarefied gas flow in the transition region about a spherical probe:A Monte Carlo approach with application to Rocket-Borne ion probe experiments:NASA-CR-123315[R]. Washington, D.C.:NASA, 1971.
[35] 茆诗松, 程依明, 濮小龙. 概率论与数理统计教程[M]. 北京:高等教育出版社, 2011:139-161. MAO S S, CHENG Y M, PU X L. A study for probability and statistics[M]. Beijing:Higher Education Press, 2011:139-161 (in Chinese).
[36] BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[M]. New York:Oxford University Press, 1994:417-422.
[37] 黄飞, 沈清, 程晓丽, 等. 一种DSMC分子仿真下的权因子预定义方法[J]. 航空学报, 2014, 35(8):2174-2181 HUANG F, SHEN Q, CHENG X L, et al. A new predefined method of particle weight in DSMC molecular simulation[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2174-2181 (in Chinese).
[38] 黄飞, 苗文博, 程晓丽, 等. 一种DSMC仿真的并行策略[J]. 航空学报, 2014, 35(4):968-974. HUANG F, MIAO W B, CHENG X L, et al. A parallel algorithm of DSMC method[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(4):968-974 (in Chinese).
/
〈 | 〉 |