ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Offline calibration method of low frequency error of star sensor and gyroscope drift
Received date: 2016-06-22
Revised date: 2016-07-18
Online published: 2016-07-29
Supported by
National Natural Science Foundation of China (61273081);Heilongjiang Postdoctoral Scientific Research Development Fund (LBH-Q14054);the Fundamental Research Funds for the Central Universities (HEUCFD1503)
High-accuracy post attitude data is critical to the improvement of image quality of remote sensing platforms. During offline processing, errors of attitude sensors can be efficiently calibrated to achieve higher precision of attitude determination. However, coupling influence of low frequency error (LFE) and gyroscope drift can cause the decrease of calibration precision. In order to solve the problem, a mathematical model of the influence is derived in this paper. Meanwhile, a two-step bidirectional smoothing algorithm is proposed to calibrated separately gyroscope drift and LFE. Gyroscope drift and LFE can be perfectly separated with the proposed method. In order to solve the problems of slow convergence of LFE parameters and the difficulty of tuning noise parameters a maximum-likelihood-estimation (MLE) based bidirectional adaptive filtering algorithm is developed, which can improve both convergence speed and precision dramatically. Under the simulation condition in this paper, the accuracy of offline attitude determination reaches 0.8"(3σ) and the convergence time of LFE parameters is not more than 4 orbital periods.
ZHAO Lin , XIE Ruida , LIU Yuan , HAO Yong . Offline calibration method of low frequency error of star sensor and gyroscope drift[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(5) : 320552 -320552 . DOI: 10.7527/S1000-6893.2016.0218
[1] IWATA T. Advanced land observing satellite (ALOS):On-orbit status and platform calibration[C]//Geoscience and Remote Sensing Symposium. Piscataway, NJ:IEEE Press, 2007.
[2] IWATA T, ISHIDA H, OSAWA Y. Advanced land observing satellite (ALOS):Enabling technologies and platform performance[C]//Proceedings of SPIE 71060, Sensors, Systems, and Next-generation Satellites XⅡ. Bellingham, WA:SPIE, 2008.
[3] IWATA T, UO M, KAWAHARA T. Ground-based precision attitude determination using repeated smoothing with sequential rate bias and attitude estimation[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2010:8451.
[4] IWATA T. Precision attitude and position determination for the advanced land observing satellite (ALOS)[C]//Proceedings of SPIE-The International Society for Optical Engineering. Bellingham, WA:SPIE, 2005:5659.
[5] IWATA T, HOSHINO H, YOSHIZAWA T, et al. Precision attitude determination for the advanced land observing satellite (ALOS):Design, verification, and on-orbit calibration[C]//AIAA Guidance, Navigation and Control Conference and Exhibit. Reston:AIAA, 2007.
[6] LEI X, YANG J. Application of RTS optimal smoothing algorithm in satellite attitude determination[C]//International Conference on Intelligent Control and Information Processing. Piscataway, NJ:IEEE Press, 2011:978-982.
[7] YANG J, LEI X. Satellite attitude determination in post-processing based on URTS optimal smoother[C]//2012 12th International Conference on Control, Automation and Systems (ICCAS). Piscataway, NJ:IEEE Press, 2012:267-272.
[8] SARKKA S. Unscented Rauch-Tung-Striebel smoother[J]. IEEE Transactions on Automatic Control, 2008, 53(3):845-849.
[9] 卢欣, 武延鹏, 钟红军, 等. 星敏感器低频误差分析[J]. 空间控制技术与应用, 2014, 40(2):1-7. LU X, WU Y P, ZHONG H J, et al. Low frequency error analysis of star sensor[J]. Aerospace Control and Application, 2014, 40(2):1-7 (in Chinese).
[10] 熊凯, 宗红, 汤亮. 星敏感器低频误差在轨校准方法研究[J]. 空间控制技术与应用, 2014, 40(3):8-13. XIONG K, ZONG H, TANG L. On star sensor low frequency error in-orbit calibration method[J]. Aerospace Control and Application, 2014, 40(3):8-13 (in Chinese).
[11] XIONG K, ZONG H. Performance evaluation of star sensor low frequency error calibration[J]. Acta Astronautica, 2014, 98:24-36.
[12] 熊凯, 汤亮, 刘一武. 基于地标信息的星敏感器低频误差标定方法[J]. 空间控制技术与应用, 2012, 38(3):11-15. XIONG K, TANG L, LIU Y W. Calibration of star sensor's low frequency error based on landmark information[J]. Aerospace Control and Application, 2012, 38(3):11-15 (in Chinese).
[13] SCHMIDT U, ELSTNER C, MICHEL K. ASTRO 15 star tracker flight experience and further improvements towards the ASTRO APS star tracker[C]//AIAA Guidance, Navigation and Control Conference and Exhibit. Reston:AIAA, 2008.
[14] LAI Y W, LIU J H, DING Y H, et al. Precession-nutation correction for star tracker attitude measurement of STECE satellite[J]. Chinese Journal of Aeronautics, 2014, 27(1):117-123.
[15] LAI Y W, LIU J H, DING Y H, et al. In-flight quality evaluation of attitude measurements from STECE APS-01 star tracker[J]. Acta Astronautica, 2014, 102:207-216.
[16] 赖育网, 谷德峰, 刘俊宏, 等. 星敏感器/陀螺在轨系统误差分析与校准[C]//第三届高分辨率对地观测学术年会分会论文集. 北京:中国学术期刊电子出版社, 2014. LAI Y W, GU D F, LIU J H, et al. In-flight systematic error analysis and calibration for star tracker/gyro[C]//3th China High Resolution Earth Observation Conference. Beijing:China Academic Journal Electronic Publishing House, 2014 (in Chinese).
[17] 王晓东. 大视场高精度星敏感器技术研究[D]. 长春:中国科学院研究生院, 长春光学精密机械与物理研究所, 2003:15-50. WANG X D. Study on wild-field-of-view and high-accuracy star sensor technologies[D]. Changchun:Changchun Institute of Optics, Fine Mechanics and Physics, Graduate University of Chinese Academy of Science, 2003:15-50 (in Chinese).
[18] ROGERS G D, SCHWINGER M R, KAIDY J T, et al. Autonomous star tracker performance[J]. Acta Astronautica, 2009, 65(1-2):61-74.
[19] WANG J Q, XIONG K, ZHOU H Y. Low-frequency periodic error identification and compensation for star tracker attitude measurement[J]. Chinese Journal of Aeronautics, 2012, 25(4):615-621.
[20] MOHAMED A H. Optimizing the estimation procedure in INS/GPS integration for kinematic applications[D]. Calgary:University of Calgary, 1999:62-65.
/
〈 | 〉 |