Fluid Mechanics and Flight Mechanics

Test and numerical simulation on magneto-hydrodynamic flow control with nonequilibrium ionization

  • LI Yiwen ,
  • FAN Hao ,
  • ZHANG Bailing ,
  • WANG Yutian ,
  • DUAN Chengduo ,
  • GAO Ling ,
  • ZHUANG Zhong ,
  • HE Guoqiang
Expand
  • 1. Science and Technology on Combustion, Internal Flow and Thermo-Structure Laboratory, Astronautics School, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi'an 710038, China

Received date: 2016-04-26

  Revised date: 2016-06-12

  Online published: 2016-07-01

Supported by

National Natural Science Foundation of China (51306207,11372352); China Postdoctoral Science Foundation (2016M590972); Natural Science Foundation Research Project of Shaanxi Province (2015JM5184)

Abstract

In order to study the mechanism of MHD flow control, an experimental system based on MHD technology is established. Ma=3.5 flow is ionized with radio frequency-direct current composite discharge to acquire the bulk mass and uniform current. The research on accelerating/decelerating in different directional magnetic field is implemented, and the effect of MHD control is analyzed by static pressure of experimental section and quasi-one-dimensional model. The numerical simulation of MHD flow control with the MHD model is carried out based on the Navier-Stokes equation coupled with the electronmagnetism source term. The result shows that the bulk mass and the uniform current in Ma=3.5 flow can be acquired with radio frequency-direct current composite discharge, and the conductivity is 0.015 S/m. As a result of joule heat, the static pressure rises 130 Pa with accelerating Lorentz force, and 200 Pa with decelerating Lorentz force. There is less than 10% energy is spent on the MHD flow control. The result of numerical simulation shows that under the experimental condition, the static pressure rises 128 Pa with accelerating Lorentz force, and 208 Pa with decelerating Lorentz force. The simulation results agree basically with the experiment results.

Cite this article

LI Yiwen , FAN Hao , ZHANG Bailing , WANG Yutian , DUAN Chengduo , GAO Ling , ZHUANG Zhong , HE Guoqiang . Test and numerical simulation on magneto-hydrodynamic flow control with nonequilibrium ionization[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(3) : 120368 -120368 . DOI: 10.7527/S1000-6893.2016.0188

References

[1] SU C B, LI Y H, CHEN B Q, et al. Experimental investigation of MHD flow control for the oblique shock wave around the ramp in low-temperature supersonic flow[J]. Chinese Journal of Aeronautics, 2010, 22(1):22-32.
[2] 王振国, 梁剑寒, 丁猛, 等. 高超声速飞行器动力系统研究进展[J]. 力学进展, 2009, 39(6):716-739. WANG Z G, LIANG J H, DING M,et al. A review on hypersonic airbreathing propul sion system[J]. Advanced in Mechanics, 2009, 39(6):716-739(in Chinese).
[3] 郑小梅, 吕浩宇, 徐大军, 等. MHD加速器模式磁控进气道的优化设计[J]. 航空学报, 2010, 31(2):223-230. ZHENG X M, LU H Y, XU D J, et al. Optimization of accelerator mode MHD controlled inlet[J]. Acta Aeronoutica et Astronautica Sinica, 2010, 31(2):223-230(in Chinese).
[4] KURANOV A L, KUCHINSKY V V, SHEIKIN E G. Scramjet with MHD control under "Ajax" concept. requirements for MHD Systems:AIAA-2001-2881[R]. Reston:AIAA, 2001.
[5] KURANOV A L, SHEIKIN E G. MHD control on hypersonic aircraft under "AJAX" concept. possibilities of MHD Generator:AIAA-2002-0490[R]. Reston:AIAA, 2002.
[6] DAVID M W, NEDUNGADI A. Plasma aerodynamic flow control for hypersonic inlets:AIAA-2004-4129[R]. Reston:AIAA, 2004.
[7] BRICHKIN D I, KURANOV A L, SHEIKIN E G. The potentialities of MHD control for improving scramjet proformance:AIAA-1999-4969[R]. Reston:AIAA, 1999.
[8] SHNEIDER M N, MACHERET S O, MILES R B. Nonequilibrium magnetohydrodynamic control of scramjet inlet:AIAA-2002-2251[R]. Reston:AIAA, 2002.
[9] BOBASHEV S V, GOLOVACHOV Y P, VANWIE D M. Deceleration of supersonic plasma flow by an applied magnetic field:AIAA-2002-2247[R]. Reston:AIAA, 2002.
[10] BOBASHEV S V, MENDE N P, SAKHAROV V A, et al. MHD control of the separation phenomenon in a supersonic Xenon plasma flow:AIAA-2003-168[R]. Reston:AIAA, 2003.
[11] BOBASHEV S V, GOLOVACHOV Y P, VAN WIE D M. Deceleration of supersonic plasma flow by an applied magnetic field[J]. Journal of Propulsion and Power 2003, 19(4):538-546.
[12] 李益文, 李应红, 张百灵, 等. 基于激波风洞的超声速磁流体动力技术试验系统[J]. 航空学报, 2011, 32(6):1015-1024. LI Y W, LI Y H, ZHANG B L, et al. Supersonic magnetohydyodynamic technical experimental system dased on shock tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6):1015-1024(in Chinese).
[13] NISHIHARA M. Low-temperature supersonic flow control using repetitively pulsed MHD force[D]. Columbus:The Ohio State University, 2006.
[14] NISHIHARA M, BRUZZESE J, ADAMOVICH I V. Experimental and computational studies of low-temperature M=4 flow deceleration by Lorentz gorce:AIAA-2007-4595[R]. Reston:AIAA, 2007.
[15] NISHIHARA M J, RICH W, LEMPERT W R, et al. MHD flow control and power generation in low-temperature supersonic flows:AIAA-2006-3076[R]. Reston:AIAA, 2006.
[16] MEYER R, CHINTALA N, BYSTRICKY B, et al. Lorentz force effect on a supersonic ionized boundary layer:AIAA-2004-0510[R]. Reston:AIAA, 2004.
[17] UDAGAWA K, KAMINAGA S, ASANO H, et al. MHD boundary layer flow acceleration experiments:AIAA-2006-3233[R]. Reston:AIAA, 2006.
[18] UDAGAWA K, KAWAGUCH K, SAITO S, et al. Experimental study on supersonic flow control by MHD interaction:AIAA-2008-4222[R]. Reston:AIAA, 2008.
[19] MACHERET S O, SHNEIDER M N, MILES R B. External supersonic flow and scramjet inlet control by MHD with electron beam ionization:AIAA-2001-0492[R]. Reston:AIAA, 2001.
[20] LEONOV S B, YARANTSEV D A. Near-surface electrical discharge in supersonic airflow:properties and flow control[J]. Journal of Propulsion and Power 2008, 24(6):1168-1181.

Outlines

/