Fluid Mechanics and Flight Mechanics

Effect of Dryden atmospheric turbulence on minimum-energy trajectory of stratospheric airships

  • ZHANG Liming ,
  • XING Jianjun ,
  • CHEN Ziang ,
  • WANG Yi ,
  • YU Yang
Expand
  • School of Aeronautics and Astronautics, Central South University, Changsha 410083, China

Received date: 2016-03-02

  Revised date: 2016-05-22

  Online published: 2016-05-26

Supported by

China Postdoctoral Science Foundation (20080440217, 200902666)

Abstract

This paper investigates the ascent optimal trajectory of stratospheric airship with constant wind and the effect of atmospheric turbulence on optimal trajectory. First, three-degree-of-freedom dynamics model of stratospheric airship was completed by forces analysis, considering the constant wind, earth rotation, mass rate and other factors, and then the variables were scaled to obtain a normalized system equation. Second, this problem of optimal trajectory was transformed into a problem of nonlinear programming by using the direct collocation method. Considering the minimum energy scenario, an appropriate solution for nonlinear programming problem was determined, and the feasible solution was obtained. Then the control history of solution was taken into the system equation to examine the feasibility and the acceleration components were analyzed. Finally, the Dryden atmospheric turbulence was introduced to the minimum energy scene, and then the data of computation and comparison analysis were obtained. By discussing the error between calculation and simulation, the relation of the error of final position and the mean of complex wind was found, and a strategy for resisting the interference of Dryden atmospheric turbulence for stratospheric airships was raised.

Cite this article

ZHANG Liming , XING Jianjun , CHEN Ziang , WANG Yi , YU Yang . Effect of Dryden atmospheric turbulence on minimum-energy trajectory of stratospheric airships[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(1) : 120180 -120180 . DOI: 10.7527/S1000-6893.2016.0157

References

[1] 李智斌, 吴雷, 张景瑞, 等. 平流层飞艇动力学与控制研究进展[J]. 力学进展, 2012, 42(4):483-493. LI Z B, WU L, ZHANG J R, et al. Review of dynamic and control of stratospheric airships[J]. Advances in Mechanics, 2012, 42(4):483-493(in Chinese).
[2] LI Y W, NAHON M, SHARF I. Airship dynamics modeling:A literature review[J]. Progress in Aerospace Sciences, 2011, 47(3):217-239.
[3] 张礼学, 王中伟. 平流层飞艇环境适应性评价模型[J]. 航空学报, 2013, 34(4):719-726. ZHANG L X, WANG Z W. Environmental adaptabiity evaluation model for stratospheric airships[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4):719-726(in Chinese).
[4] 郭建国, 周军. 临近空间低动态飞行器控制研究综述[J]. 航空学报, 2014, 35(2):320-331. GUO J G, ZHOU J. Review of the control of low dynamic vehicles in near space[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):320-331(in Chinese).
[5] LEE S, BANG H. Three-dimensional ascent trajectory optimization for stratospheric airship platforms in the jet stream[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5):1341-1352.
[6] LEE S, JANG J, RYU H, et al. Matching trajectory optimization and nonlinear tracking control for HALE[J]. Advances in Space Research, 2014, 54(9):1870-1887.
[7] MUELLER J B, ZHAO Y J, GARRARD W L. Optimal ascent trajectories for stratospheric airships using wind energy[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(4):1232-1245.
[8] GUO X, ZHU M. Ascent trajectory optimization for stratospheric airships with thermal effects[J]. Advances in Space Research, 2013, 52(6):1097-1110.
[9] 赵震炎, 肖业伦, 施毅坚. Dryden大气紊流模型的数字仿真技术[J]. 航空学报, 1986, 7(5):432-443. ZHAO Z Y, XIAO Y L, SHI Y J. A digital simulation technique for Dryden atmospheric turbulence model[J]. Acta Aeronautica et Astronautica Sinica, 1986, 7(5):432-443(in Chinese).
[10] 吉洪蕾, 陈仁良, 李攀. 适用于直升机飞行力学分析的三维空间大气紊流模型[J]. 航空学报, 2014, 35(7):1825-1835. JI H L, CHEN R L, LI P. A model of three-dimensional-field atmospheric turbulence for helicopter flight dynamics analysis[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1825-1835(in Chinese).
[11] DOGAN A, LEWIS T A. Flight data analysis and simulation of wind effects during aerial refueling[J]. Journal of Aircraft, 2008, 45(6):2036-2048.
[12] XING J J, TANG G J, CHENG W K, et al. Robust nonlinear control of spacecraft formation flying using constraint forces[J]. Science China Technological Sciences, 2011, 54(9):2276-2282.
[13] TUCKERMAN L B. Inertia factors of ellopsoids for use in airship design:NACA report No.210[R]. Washington, D.C.:NACA, 1925.
[14] MUELLER J B. Design and analysis of optimal ascent tra-jectories for stratospheric airships[D]. Minnesota:The University of Minnesota, 2013.
[15] 糜攀攀, 孟军辉, 吕明云. 浮升混合飞艇气动性能及总体参数分析[J]. 北京航空航天大学学报, 2015, 41(6):1108-1116. MI P P, MENG J H, LYU M Y. Aerodynamic and over-all parameters analysis of buoyancy-lifting hybrid air-ship[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6):1108-1116(in Chinese).
[16] MUELLER J B, PALUSZEK M A, ZHAO Y J. Development of an aerodynamic model and control law design for a high altitude airship:AIAA-2004-6479[R]. Reston:AIAA, 2004.
[17] 雍恩米, 陈磊, 唐国金. 飞行器轨迹优化数值方法综述[J]. 宇航学报, 2008, 29(2):397-406. YONG E M, CHEN L, TANG G J. A survey of numerical Methods for trajectory optimization of spacecraft[J]. Journal of Astronautics, 2008, 29(2):397-406(in Chinese).
[18] 张煜, 张万鹏, 陈璟, 等. 基于Gauss伪谱法的UCAV对地攻击武器投放轨迹规划[J]. 航空学报, 2011, 32(7):1240-1251. ZHANG Y, ZHANG W P, CHEN J, et al. Air-to-ground weapon delivery trajectory planning for UCAVs using Gauss pseudospectral method[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7):1240-1251(in Chinese).
[19] 肖业伦. Dryden大气紊流频谱的等价确定性函数及其在飞机相应问题中的应用[J]. 航空学报, 1986, 7(2):198-204. XIAO Y L. The equivalent deterministic function of the Dryden's spectra of atmospheric turbulence and its application to the aircraft response problem[J]. Acta Aeronautica et Astronautica Sinica, 1986, 7(2):198-204(in Chinese).
[20] CAMPBELL C W. A spatial model of wind shear and turbulence for flight simulation:NASA-TR-TP-2313[R]. Washington, D.C.:NASA, 1984.

Outlines

/