Fluid Mechanics and Flight Mechanics

Numerical simulation and experimental calibration of continuously adjustable wind tunnel with Mach number 2 to 4

  • QI Weicheng ,
  • XU Jinglei ,
  • FAN Zhipeng ,
  • MO Jianwei ,
  • TANG Lan
Expand
  • Jiangsu Province Key Laboratory of Aerospace Power System, School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2016-02-23

  Revised date: 2016-04-18

  Online published: 2016-05-03

Supported by

National Natural Science Foundation of China (50876042, 90916032, 11672346)

Abstract

The study of variable Mach number wind tunnel nozzle with good performance, simple structure and easy adjustment, which can generate fast response on the exit Mach number by rotating the tunnel profile, is now a focus of research and has very good prospects for development. For the profile rotating wind tunnel nozzle with Mach number varying from 2 to 4 obtained by optimization design, 3D numerical simulation and experimental calibration for the flow field of the wind tunnel have been conducted. The size of the real uniform region and the Mach number standard deviation in the condition of different Mach numbers are obtained. Experimental results show that the profile rotating wind tunnel can continuously change the wind tunnel Mach number from 2 to 4, and the uniformity of the flow field is good, which even can meet up the requirement of the National Military Standard of China for a fixed geometry wind tunnel nozzle. The size of the real uniform region is larger than 2/3 of the ideal diamond region under the different Mach conditions. The Mach number standard deviations in the uniform region are less than 0.01 for Mach number 2 to 3, and for Mach number 3.5 is 0.013 6. It is shown that the wind tunnel can realize the continuous variation of Mach number with a good performance. Therefore, it can be used in the future for wind tunnel test.

Cite this article

QI Weicheng , XU Jinglei , FAN Zhipeng , MO Jianwei , TANG Lan . Numerical simulation and experimental calibration of continuously adjustable wind tunnel with Mach number 2 to 4[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(1) : 120155 -120155 . DOI: 10.7527/S1000-6893.2016.0124

References

[1] AGRAWAL R K. A generalized mathematical model to estimate gas turbine starting characteristics:ASME Paper 81-GT-102[R]. New York:ASME, 1981.
[2] LAM D W. Use of PARC code to estimate the off-design transonic performance of an over/under turbo ramjet nozzle:AIAA-1995-2616[R]. Reston:AIAA, 1995.
[3] 赵丽凤, 王逊, 刘小兵. 涡轮-冲压组合发动机模态过渡段性能模拟和概念探讨[J]. 工程热物理学报, 1999, 20(1):9-12. ZHAO L F, WANG X, LIU X B. Performance simulation and conceptual investigation of turbo ramjet engine in transition period[J]. Journal of Engineering Thermophysics, 1999, 20(1):9-12(in Chinese).
[4] KORE J J, HODGE J S. Flow quality of hypersonic-tunnel nozzle design using computational fluid dynamics[J]. Journal of Spacecraft and Rockets, 1995, 32(4):569-580.
[5] LKAWA H. Rapid methodology for design and performance prediction of integrated scramjet/hypersonic vehicle:AIAA-1989-2682[R]. Reston:AIAA, 1989.
[6] ELLIS R A, LEE J C, PAYNE F M, et al. Development of a carbon-carbon translating nozzle extension for the RL10B-2 liquid rocket engine:AIAA-1997-2672[R]. Reston:AIAA, 1997.
[7] ERDMANN S F. A new economic flexible nozzle for supersonic wind-tunnels[J]. Journal of Aircraft, 1971, 8(1):58-60.
[8] KITAMURA E, MITANI T, SAKURANAKA N, et al. Variable nozzles for aerodynamic testing of scramjet engines[C]//IEEE International Congress on Instrumentation in Aerospace Simulation Facities. Piscataway, NJ, IEEE, 2005:348-354.
[9] TICHENOR N R, SEMPER M T, BOWERSOX R D W, et al. Calibration of an actively controlled expansion hypersonic wind tunnel:AIAA-2010-4793[R]. Reston:AIAA, 2010.
[10] 彭强, 廖达雄, 秦红岗,等. 半柔壁喷管初步实验研究[J]. 实验流体力学, 2012, 26(3):101-106. PENG Q, LIAO D X, QIN H G, et al. The primary experimental research on the aerodynamic designing of semiflexible nozzle[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(3):101-106(in Chinese).
[11] 李东霞, 顾洪斌, 陈强,等. 变马赫数高超声速喷管方案设计[C]//第四届高超声速科技学术会议. 2011. LI D X, GU H B, CHEN Q, et al. An exploratory variable mach number techniques study of hypersonic wind tunnel[C]//4th Hypersonic Science and Technology Conference. 2011(in Chinese).
[12] 范志鹏, 徐惊雷, 吕郑, 等. 型面旋转变马赫数风洞喷管的优化设计[J]. 航空学报, 2014, 35(5):1216-1225. FAN Z P, XU J L, LYU Z, et al. Optimization design of the variable mach number wind tunnel by rotating profile[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5):1216-1225(in Chinese).
[13] ZUCROW M J, HOFFMAN J D. Gas dynamics[M]. New York:John Wiley & Sons. Inc., 1976:191-192.
[14] 刘政崇. 风洞结构设计[M]. 北京:中国宇航出版社, 2004. LIU Z C. Wind tunnel structure design[M]. Beijing:China Astronautic Publishing House, 2004(in Chinese).
[15] 唐志共, 杨彦广, 徐翔, 等. 高超声速气动力试验[M]. 北京:国防工业出版社, 2004. TANG Z G, YANG Y G, XU X, et al. Hypersonic aerodynamic test[M]. Beijing:National Defense Industry Press, 2004(in Chinese).
[16] TILMANN C P, BOWERSOX R D W. On the design and construction of an academic Mach 5 wind tunnel:AIAA-1999-0800[R]. Reston:AIAA, 1999.
[17] 全志斌, 徐惊雷, 李斌, 等. 超燃冲压发动机尾喷管非均匀进口的冷流试验与数值模拟研究[J]. 航空学报, 2013, 34(10):2308-2315 QUAN Z B, XU J L, LI B, et al. Cold flow experiment and numerical study on nonuniform entrance of scramjet nozzle[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10):2308-2315(in Chinese).
[18] 恽起麟, 孙绍鹏, 徐明方, 等. 高速风洞和低速风洞流场品质规范:GJB1179-91[S]. 北京:国防科学技术工业委员会, 1991:2-4. YUN Q L, SUN S P, XU M F, et al. Specification for flow field quality of high and low speed wind tunnels:GJB 1179-1991[S]. Beijing:Defense Science, Technology and Industry Committee, 1991:2-4(in Chinese).
[19] 何霖. 直连式超声速风洞与"超-超"混合层风洞的设计与实验研究[D]. 长沙:国防科学技术大学, 2006. HE L. The design and experimental studies of supersonic straight through wind tunnel and "supersonic-supersonic" mixing layer wind tunnel[D]. Changsha:National University of Defense Technology, 2006(in Chinese).
[20] 周勇为, 易仕和, 程忠宇. Φ200高超声速风洞调试和流场校测[J]. 国防科技大学学报, 2009, 31(6):57-61. ZHOU Y W, YI S H, CHENG Z Y. The test and calibration of 200 hypersonic wind tunnel[J]. Journal of National University of Defense Technology, 2009, 31(6):57-61(in Chinese).
[21] 陈德华, 王瑞波, 刘光远, 等. 2.4 m跨声速风洞槽壁试验段调试及流场校测[J]. 实验流体力学, 2013, 27(4):66-70. CHEN D H, WANG R B, LIU G Y, et al. The test and flow field calibration of 2.4 m transonic wind tunnel slotted test section[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(4):66-70(in Chinese).

Outlines

/