ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Waverider design for controlled leading and trailing edge
Received date: 2016-02-23
Revised date: 2016-04-05
Online published: 2016-04-06
Supported by
National Natural Science Foundation of China (90916029)
The design method of waverider with controllable leading and trailing edge is proposed in this paper. Based on the external conical basic flowfield with controlled Mach number distribution, the waverider with elliptical leading edge to elliptical trailing edge transition is designed utilizing the streamline tracing technique and blend function. Numerical simulation results at design (Ma=6.0) and relay point (Ma=4.0) indicate that the waverider with controlled leading and trailing edge produces a weaker shock on the acute transition surface. There is a high temperature and pressure section on both sides of the exit plane. The back shock shape near symmetric plane changes from circular arc to straight line and the exit flowfield is essentially uniform, which would be very favorable to match the inlets. Moreover, the waverider is of high volume ratio and precompression efficiency, and the volume ratio after boundary layer correction is 0.24. Also, it has good waverider characteristics on design point, and its forepart rides wave completely on relay point. The lift-drag ratio is high, which is 2.54 and 2.41 for the viscous design and relay point, respectively. In addition, comparison with the waverider with controlled leading edge indicates that the lift force, drag force, pitching moment and exit compression ratio are significantly increased, but the lift-drag ratio and exit total pressure recovery coefficient are decreased. On design point, lift-drag ratio decreases from 3.56 to 3.00 under inviscid condition. In conclusion, this design method is feasible and more flexible, and extends the scope of waverider.
Key words: hypersonic; waverider; curved shock wave; blend function; streamline tracing
LI Yongzhou , SUN Di , ZHANG Kunyuan . Waverider design for controlled leading and trailing edge[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(1) : 120153 -120153 . DOI: 10.7527/S1000-6893.2016.0112
[1] ANDERSON J D, LEWIS M J. Hypersonic waveriders-where do we stand:AIAA-1993-0399[R]. Reston:AIAA, 1993.
[2] TINCHER D J, BURNETT D W. A hypersonic waverider flight test vehicle:the logical next step:AIAA-1992-0308[R]. Reston:AIAA, 1992.
[3] HAGSETH P E, BLANKSON I M. Current technologies for waverider aircraft:AIAA-1993-0400[R]. Reston:AIAA, 1993.
[4] 尤延铖, 梁德旺. 基于内乘波概念的三维变截面高超声速进气道[J]. 中国科学:技术科学, 2009, 39(8):1483-1494. YOU Y C, LIANG D W. Design concept of three dimensional section controllable internal waverider hypersonic inlet[J]. Science China:Technological Sciences, 2009, 39(8):1483-1494(in Chinese).
[5] SOBIECZKY H, ZORES B, WANG Z. High speed flow design using the theory of osculating cones and axisymmetric flows[J]. Chinese Journal of Aeronautics, 1999, 12(1):1-8.
[6] RASMUSSEN M L, JISCHKE M C, DANIEL D C. Experimental forces and moments on cone-derived waveriders for Ma=3 to 5[J]. Journal of Spacecraft and Rockets, 1982, 19(6):592-598.
[7] GOONKO Y P, MAZHUL I I, MARKELOV G N. Convergent flow derived waveriders[J]. Journal of Aircraft, 2000, 37(4):647-654.
[8] NONWEILER T R F. Delta wings of shapes amenable to exact shock-wave theory[J]. Journal of the Royal Aeronautical Society, 1963, 6(7):39-40.
[9] RASMUSSEN M P. Waverider configurations derived from inclined circular and elliptic cones[J]. Journal of Spacecraft and Rockets, 1980, 17(5):537-545.
[10] TAKASHIMA N, LEWIS M J. Waverider configurations based on non-axisymmetric flow fields for engine-airframe integration:AIAA-1994-0380[R]. Reston:AIAA, 1994.
[11] RODI P E. Non-symmetric waverider star bodies for aerodynamic moment generation:AIAA-2012-3222[R]. Reston:AIAA, 2012.
[12] 贺旭照, 倪鸿礼. 密切曲面锥乘波体——设计方法与性能分析[J]. 力学学报, 2011, 43(6):1077-1082. HE X Z, NI H L. Osculating curved cone (OCC) waverider:Design methods and performance analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6):1077-1082(in Chinese).
[13] CORDA S, ANDERSON J D. Viscous optimized hypersonic waveriders designed form axisymmetric flowfields:AIAA-1988-0369[R]. Reston:AIAA, 1988.
[14] LOBBIA M A, SUZUKI K. Experimental investigation of a Mach 3.5 waverider designed using computational fluid dynamics[J]. AIAA Journal, 2015, 53(6):1590-1601.
[15] 钱翼稷. 超音速轴对称有旋流特征线法的计算程序[J]. 北京航空航天大学报, 1996, 22(4):454-459. QIAN Y J. Computer program of supersonic axisymmetric rotational characteristic method[J]. Journal of Beijing University of Aeronautics and Astronautics, 1996, 22(4):454-459(in Chinese).
[16] 王卓, 钱翼稷. 乘波机外形设计[J]. 北京航空航天大学学报, 1999, 25(2):180-183. WANG Z, QIAN Y J. Waverider configuration design[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(2):180-183(in Chinese).
[17] 乔文友, 黄国平, 夏晨, 等. 发展用于高速飞行器前体/进气道匹配设计的逆特征线法[J]. 航空动力学报, 2014, 29(6):1444-1452. QIAO W Y, HUANG G P, XIA C, et al. Development of inverse characteristic method for matching design of high-speed aircraft forebody/inlet[J]. Journal of Aerospace Power, 2014, 29(6):1444-1452(in Chinese).
[18] LI Y Q,AN P, PAN C J, et al. Integration methodology for waverider-derived hypersonic inlet and vehicle forebody:AIAA-2014-3229[R]. Reston:AIAA, 2014.
[19] 李永洲, 张堃元. 基于马赫数分布可控曲面外/内锥形基准流场的前体/进气道一体化设计[J]. 航空学报, 2015, 36(1):289-301. LI Y Z, ZHANG K Y. Integrated design of waverider forebody and inward turning inlet based on external and internal conical basic flowfield with controlled Mach number distribution[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):289-301(in Chinese).
[20] DRAYNA T W, NOMPELIS I, CANDLER G V. Hypersonic inward turning inlets:design and optimization:AIAA-2006-0297[R]. Reston:AIAA, 2006.
[21] 王翼. 高超声速进气道启动问题研究[D]. 长沙:国防科学技术大学, 2008:27-30. WANG Y. Investigation on the starting characteristics of hypersonic inlet[D]. Changsha:National University of Defense Technology, 2008:27-30(in Chinese).
[22] 李永洲, 张堃元, 孙迪. 马赫数可控的方转圆高超声速内收缩进气道试验研究[J]. 航空学报, 2016, 37(10):2970-2979. LI Y Z, ZHANG K Y, SUN D. Experimental investigation on a hypersonic inward turning inlet of rectangular-to-circular shape with controlled Mach number distribution[J]. Acta Aeronautica et Astronamtica Sinica, 2016, 37(10):2970-2979(in Chinese).
/
〈 |
|
〉 |