ACTA AERONAUTICAET ASTRONAUTICA SINICA >
High-order precision numerical simulation of CRM wing/body/horizontal tail model
Received date: 2016-01-20
Revised date: 2016-03-14
Online published: 2016-03-21
Supported by
National Key Research and Development Program (2016YFB0200700)
High-order numerical simulation on common research model (CRM) wing/body/horizontal tail model is presented with the fifth-order WCNS scheme to assess the ability of high-order WCNS scheme on complex configuration simulation and the precision of predicating cruise drag of transonic configuration. Three grids (coarse, medium and fine) are created with software ICEM according to the gridding guidelines provided by Drag Prediction Workshop (DPW) organizing committee, and the y+ of the three grids are 1, 2/3 and 4/9. Computation and analysis on three grids are carried out to investigate the grid effect on aerodynamic characteristics, pressure distribution and the local separation bubble at the wing root trailing edge. Compared to the statistic results from DPW4 and some experimental data from NTF, the high-order numerical results show that the computational results of aerodynamic characteristics agree well with statistic data; the grid density has little influence on pressure distribution on the inboard stations, whereas it has some influence on the outboard stations; the grid density has some influence on the size of the local separation bubble at the wing root trailing edge.
WANG Yuntao , SUN Yan , MENG Dehong , WANG Guangxue . High-order precision numerical simulation of CRM wing/body/horizontal tail model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(12) : 3692 -3697 . DOI: 10.7527/S1000-6893.2016.0080
[1] LEVY D W, VASSBERG J C, WAHLS R A, et al. Summary of data from the first AIAA CFD drag prediction workshop[J]. Journal of Aircraft, 2003, 40(5):875-882.
[2] LAFLIN K R, VASSBERG J C, WAHLS R A, et al. Summary of data from the second AIAA CFD drag prediction workshop[J]. Journal of Aircraft, 2005, 42(5):1165-1178.
[3] VASSBERG J C, TINOCO E N, MANI M, et al. Abridged summary of the third AIAA CFD drag prediction workshop[J]. Journal of Aircraft, 2008, 45(3):781-798.
[4] VASSBERG J C, TINOCO E N, MANI M, et al. Summary of the fourth AIAA computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2014, 51(4):1070-1089.
[5] LEVY D W, LAFLIN K R, TINOCO E N, et al. Summary of data from the fifth computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2014, 51(4):1194-1213.
[6] VASSBERG J C, DEHAAN M A, RIVERS S M, et al. Development of a common research model for applied CFD validation studies:AIAA-2008-6919[R]. Reston:AIAA, 2008.
[7] 王运涛, 张书俊, 孟德虹. DPW4翼/身/平尾组合体的数值模拟[J]. 空气动力学学报, 2013, 31(6):739-744. WANG Y T, ZHANG S J, MENG D H. Numerical simulation and study for DPW4 wing/body/tail[J]. Acta Aerodynamica Sinica, 2013, 31(6):739-744(in Chinese).
[8] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR-2014-218178[R]. Washington, D.C.:NASA, 2014.
[9] DENG X G, ZHANG H X. Developing high-order werighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165:24-44.
[10] DENG X G, MIN R B, MAO M L, et al. Further studies on geometric conservation law and application to high-order finite difference scheme with stationary grid[J]. Journal of Computational Physics, 2013, 239:90-111.
[11] 王运涛, 孙岩, 王光学, 等. DLR-F6翼身组合体的高阶精度数值模拟[J]. 航空学报, 2015, 36(9):2923-2929. WANG Y T, SUN Y, WANG G X, et al. High-order numerical simulation of DLR-F6 wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):2923-2929(in Chinese).
[12] WANG Y T, ZHANG Y L, LI S, et al. Calibration of a γ-Reθ transition model and its validation with high-order numerical method[J]. Chinese Journal of Aeronautics, 2015, 28(3):704-711.
[13] 王运涛, 孟德虹, 孙岩, 等. DLR-F6/FX2B翼身组合体构型高阶精度数值模拟[J]. 航空学报, 2016, 37(2):484-490. WANG Y T, MENG D H, SUN Y, et al. High-order numerical simulation of DLR-F6/FX2B wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):484-490(in Chinese).
[14] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8):1598-1605.
[15] CHEN R F, WANG Z J. Fast, block lower-upper symmetric Gauss-Seidel scheme for arbitrary grids[J]. AIAA Journal, 2000, 38(12):2238-2245.
[16] 王光学, 张玉伦, 王运涛, 等. BLU-SGS方法在WCNS高阶精度格式上的数值分析[J]. 空气动力学学报, 2015, 33(6):733-739. WANG G X, ZHANG Y L, WANG Y T, et al. Numerical analysis of BLU-SGS method in WCNS high-order scheme[J]. Acta Aerodynamica Sinica, 2015, 33(6):733-739(in Chinese).
[17] MORRISON J H. Statistical analysis of CFD solutions from the fourth AIAA drag prediction workshop:AIAA-2010-4673[R]. Reston:AIAA, 2010.
[18] RIVERS M B, DITTBERNER A. Experimental investigation of the NASA common research model(invited):AIAA-2010-4218[R]. Reston:AIAA, 2010.
[19] RIVERS M B, HUNTER C A. Support system effects on the NASA common research model:AIAA-2012-0707[R]. Reston:AIAA, 2012.
[20] RIVERS M B, HUNTER C A, CAMPBELL R L. Further investigation of he support system effects and wing twist on the NASA common research model:AIAA-2012-3209[R]. Reston:AIAA, 2012.
/
〈 | 〉 |